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Abstract—In Mixed-Criticality (MC) systems, due to encoun-
tering multiple Worst-Case Execution Times (WCETs) for each
task corresponding to the system operation modes, estimating
appropriate WCETs for tasks in lower-criticality (LO) modes is
essential to improve the system’s timing behavior. While numerous
studies focus on determining WCET in the high-criticality mode,
determining the appropriate WCET in the LO mode poses
significant challenges and has been addressed in a few research
works due to its inherent complexity. This article introduces a
novel scheme to obtain appropriate WCET for LO modes. We
propose an ML-based approach for WCET estimation based on
the application’s source code analysis and the model training
using a comprehensive data set. The experimental results show
a significant improvement in utilization by up to 23.3% for the
ML-based approach, while mode switching probability is bounded
by 7.19% in the worst-case scenario.

Index Terms—Machine Learning, Mixed-Criticality, Resource
Utilization, Mode Switching Probability, WCET Analysis.

I. INTRODUCTION

Mixed-Criticality (MC) systems are widely employed in
embedded systems to effectively address the cost, space, and
energy-efficiency demands of diverse applications, including
automotive, medical devices, and avionics [1]–[4]. MC systems
are purposefully designed to handle multiple tasks with varying
criticality levels. The ultimate goal is to prevent catastrophic
damages by ensuring that all High-Criticality (HC) tasks are
executed correctly before their deadlines. Concurrently, a mul-
titude of Low-Criticality (LC) tasks are efficiently scheduled to
maximize processor utilization and achieve the high Quality-
of-Service (QoS) [2]–[5].

In conventional real-time systems, tasks are scheduled based
on their pessimistic Worst-Case Execution Time (WCET) [6],
which can be estimated through various methods, includ-
ing measurement-based, static analysis, and hybrid ap-
proaches. Besides, there are many open-source and com-
mercial tools and frameworks, to determine the pessimistic
WCET (WCET pess) [6]. However, most tasks’ execution
times are shorter than conservative WCET, which leads to
poor processor utilization and QoS [4],[7],[8]. In this regard,
multiple WCETs are defined in MC systems corresponding
to the different criticality levels and the ongoing operational
mode [9]. Since there are different operational modes in MC
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systems, initially, an MC system starts its operation in the
low-criticality mode (LO mode) while executing the tasks
based on the optimistic WCET (WCET opt, which is less
than WCET pess). If the execution time of at least one HC
task exceeds its WCET opt, the system mode changes from
LO to high-criticality mode (HI mode). In such a scenario,
all or some LC tasks must be dropped/degraded to provide
the processor computation capacity for running the HC tasks
and guarantee their correct execution before their deadlines.
However, it can drastically affect the service and cause sig-
nificant performance loss of LC tasks, i.e., QoS degradation.
When the gap between the WCET opt and WCET pess is
large, more tasks, such as LC tasks, are scheduled at design-
time. However, this can cause frequent system mode switches
and, consequently, drop more LC tasks at run-time. When this
gap is small, the overall processor utilization decreases due
to scheduling fewer tasks at design-time [3],[7]. As can be
realized, determining an appropriate value of WCET opt for
each task is essential in the efficient design of MC systems,
which we deal with in this article.

Most previous research works set WCET opt as fraction of
WCET pess [1],[9],[10]. These approaches may lead to poor
processor utilization (while WCET opt is close to WCET pess)
or more mode switches (when there is a high gap between
WCET opt and WCET pess). Besides, researchers in [3],[7]
have determined the WCET opt based on the application’s
average execution cycle (AVG) by using Chebyshev’s theorem;
however, the mode switching probability is determined pes-
simistically, which causes poor utilization. Moreover, in [4],
Machine-Learning (ML) techniques are employed to determine
WCET opt at run-time if there is enough dynamic slack on
the processor. However, this approach 1) has run-time timing
overhead, and 2) improvement percentage depends on whether
a dynamic slack would be generated at run-time.

A. Motivational Example

Fig. 1 shows the execution time distribution of a real
application, ns, a search application in the multi-dimensional
array from Mälardalen benchmark [11], running on the Rasp-
berry Pi 4 board. The X-axis represents the processor clock
cycles, and the Y-axis represents the frequency distribution.
The WCET pess for this application is 52,531 cycles, using
the SWEET tool [12]. With setting the WCET opt as a per-



Fig. 1: Execution time distribution and different obtained
WCET opt values for an application from Mälardalen bench-
mark [11], running on the Raspberry Pi 4 board

centage of WCET pess, many system mode switches occur if
we set WCETopt to WCET pess
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tasks can be scheduled in the system. On the other hand, if
WCET opt is set to WCET pess

4 and WCET pess
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average execution cycle, mode switches are reduced, but poor
utilization occurs due to scheduling fewer LC tasks. However, if
WCET opt value is close to the indigo line (shown by Optimal
WCET opt in the figure), both processor utilization and mode
switches can be improved compared to other approaches.

B. Proposed Approach
To tackle this challenge, we propose a novel scheme to obtain

the appropriate WCET opt for HC tasks to improve resource
utilization while reducing the number of mode switches at
design-time. In this scheme, we propose an ML-based ap-
proach (which can be generalized to any embedded application)
to evaluate the model functionality and performance based on
the generated data sets to train and validate different prediction
techniques. In the proposed ML-based approach, the training
phase is performed once per target architecture. After training,
the various ML algorithms can be used to determine WCET opt

for different benchmarks. WCET opt is obtained from the best-
chosen prediction model from various trained ML models.

To the best of our knowledge, this is the first work that
obtains WCET opt, utilizing ML models while guaranteeing
real-timeliness, improving the utilization by scheduling more
LC tasks and reducing the mode switches with no timing over-
head at run-time.

C. Evaluation
We evaluate the proposed scheme with extensive experiments

on a real board, Raspberry Pi, by executing 1000 instances of
seven applications from [11]. Fig. 2 shows the mode switching
probability of the system and the maximum utilization that
can be assigned to LC tasks if we set WCETopt according to
different approaches. These two objectives, i.e., mode switching
probability and LC task utilization, are computed based on what
is proposed in [3]. We observe that in [9] and [3], the mode
switching probability is less, while the utilization decreases
due to choosing the WCETopt too pessimistic. Besides, in [1]
and [10], the processor utilization increases, while the mode
switching probability is higher due to choosing WCETopt in an
optimistic manner. Our approach performs better than others in
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Fig. 2: Analyzing the mode switching probability and maxi-
mum utilization that can be assigned to LC tasks for different
approaches

achieving a reasonable trade-off between mode switching and
utilization. As can be seen, our approaches have higher utiliza-
tion and fewer mode switches due to obtaining an appropriate
WCETopt for each HC task and scheduling more LC tasks in the
systems. As a result, our ML-based approach can improve the
utilization by up to 23.3%, while mode switching probability
is bounded by 7.19% in the worst-case scenario.

II. CONCLUSION AND FUTURE WORK

This paper proposed a novel scheme that utilizes ML mod-
els to obtain optimistic WCET for mixed-criticality tasks.
The model estimates optimistic WCET from the applications’
source code. The proposed scheme improves processor utiliza-
tion significantly while reducing the system mode switches.

In future work, we would extend our scheme by analyzing
different ML models. We would also analyze the existing
WCET determination approaches to choose one of them for
better training and objective optimization.
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