
Motivating Agent-Based Learning for
Bounding Time in Mixed-Criticality Systems

Behnaz Ranjbar, Ali Hosseinghorban, and Akash Kumar, Senior Member, IEEE
Chair of Processor Design, CFAED, Technische Universität Dresden, Dresden, Germany

{behnaz.ranjbar, akash.kumar}@tu-dresden.de, ali.hosseinghorban1394@sharif.edu

Abstract—In Mixed-Criticality (MC) systems, the high Worst-
Case Execution Time (WCET) of a task is a pessimistic bound,
the maximum execution time of the task under all circumstances,
while the low WCET should be close to the actual execution time
of most instances of the task to improve utilization and Quality-of-
Service (QoS). Most MC systems consider a static low WCET for
each task which cannot adapt to dynamism at run-time. In this
regard, we consider the run-time behavior of tasks and motivate to
propose a learning-based approach that dynamically monitors the
tasks’ execution times and adapts the low WCETs to determine the
ideal trade-off between mode-switches, utilization, and QoS. Based
on our observations on running embedded real-time benchmarks
on a real platform, the proposed scheme reduces the utilization
waste by 47.2%, on average, compared to state-of-the-art works.

Index Terms—Mixed-Criticality, Mode Switching Probability,
Machine Learning, Service Adaptation, WCET Analysis.

I. INTRODUCTION

M IXED-CRITICALITY (MC) systems integrate a large
number of real-time tasks with different criticality lev-

els onto a common hardware platform to meet stringent re-
quirements such as cost, space, and timing [1]–[4]. Medical
devices, automotive, and avionics are the most common safety-
critical applications, evolving into MC systems [2], where
the successful execution of tasks with Higher-Criticality lev-
els (HC tasks) must be guaranteed in all circumstances to
prevent catastrophic damages, while a higher number of Low-
Criticality (LC) tasks should be executed to improve service
requirements (i.e., Quality-of-Service (QoS)) and consequently,
the processor utilization [3], [5].

From the MC tasks’ execution times perspective, multiple
WCETs are determined corresponding to the multiple criticality
levels. A well-known type of MC system is a dual-criticality
system (consisting of LC and HC tasks) in which two WCETs
(low (𝐶𝐿𝑂) and high (𝐶𝐻𝐼)) are determined [1]–[7]. The 𝐶𝐻𝐼

of a task is a pessimistic bound, the maximum execution time
of the task under all circumstances. However, this bound is
high, and considering it to schedule the tasks leads to poor
processor utilization and QoS (i.e., fewer LC tasks can be
scheduled) [3]. To this end, MC systems consider a 𝐶𝐿𝑂

for HC tasks that should be close to the actual execution
time of most task instances to improve utilization and QoS.
At run-time, the system starts its operation in low-criticality
mode (LO mode), and if the execution time of at least one HC
task exceeds its 𝐶𝐿𝑂, the system switches to the high-criticality

Supported in part by the German Research Foundation within the Cluster of
Excellence Center for Advancing Electronics Dresden at the TU Dresden.

0
0.1
0.2
0.3
0.4
0.5
0.6

1 41 81 121 161 201 241Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

Frame ID

0 5 10 15 20 25

Absolute Frequency(#)
0 5 10 15 20 25

0
0.5

1
1.5

2
2.5

1 101 201 301 401 501Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

Frame ID

0 25 50 75 100

Absolute Frequency (#)
0 25 50 75 100(a) Input video with few objects to

detect

0
0.1
0.2
0.3
0.4
0.5
0.6

1 41 81 121 161 201 241Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

Frame ID

0 5 10 15 20 25

Absolute Frequency(#)
0 5 10 15 20 25

0
0.5

1
1.5

2
2.5

1 101 201 301 401 501Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

Frame ID

0 25 50 75 100

Absolute Frequency (#)
0 25 50 75 100

Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

(b) Input video with few and many
objects to detect

Fig. 1: Execution time values for two different time recording videos as input
for Object Detection function during run-time and their time distribution. This
figure shows that both aspects of run-time and design-time behavior should be
considered in MC system design and task properties determination.

mode (HI mode). To guarantee the correct execution of HC
tasks in HI mode, 𝐶𝐻𝐼 are considered to schedule HC task.
Since HC tasks may execute longer in HI mode compared to
LO mode, the LC tasks are dropped/degraded to their minimum
service requirements to guarantee the correct execution of HC
tasks before their deadlines [2], [6]–[8].

As can be realized, the low WCETs (𝐶𝐿𝑂) play an important
role in improving the MC system’s QoS. Determining the high
values for 𝐶𝐿𝑂s can minimize the mode switches but reduce the
processor utilization due to scheduling fewer tasks. On the other
hand, the utilization can be maximized by determining the
low values for 𝐶𝐿𝑂s, but with a high number of mode switches,
which is not desirable. Although there are many approaches like
what is presented in [9] and tools like OTAWA [10] to deter-
mine the 𝐶𝐻𝐼 , there are few approaches for determining the
𝐶𝐿𝑂s in MC systems. These few approaches [1], [3], [6], [8]
analyze the tasks at design-time, and set the constant WCETs
for tasks in LO mode, which remain unchanged during run-
time. Such static techniques can cause significant performance
loss for LC tasks or processor under-utilization if the 𝐶𝐿𝑂s
are not close to actual execution times. In general, the actual
execution time of tasks depends on their input values. Due to
the spatial or temporal correlation in the input data stream like
video, the execution times of the tasks are often temporally
correlated.

A. Motivational Example

Fig. 1 shows the computational times of the object detection
function running on the ODROID XU4 board powered by ARM
Cortex A7. Note that the object detection function is one of
the main functions in an autonomous driving application – an
MC system. For input, videos from a road camera in the two
different time slots, converted to motion jpegs, are given to

the function of detecting cars on the road. The videos were
recorded for a period of time when it experienced both light
and heavy traffic. Fig. 1 shows how the computation times
of detecting objects vary during run-time. The computation
time values in this function depend on the number of objects
to be detected. As we can see, the times of multiple jpeg
images are clustered due to the temporal correlation between
the subsequent inputs presented to the application.

For this example, static approaches such as the one presented
in [1], [3], [6] set the static 𝐶𝐿𝑂, considering the execution
time of the majority of instances. This static WCET works
fine for some time, but it may lead to frequent mode switches
when there are many objects to detect (e.g., heavy traffic) or
poor utilization when there are few objects to detect in this
function (e.g., light traffic). As a result, proposing an adaptive
scheme to determine 𝐶𝐿𝑂 dynamically may significantly im-
prove the mode switches, QoS, and utilization. Therefore, the
system’s run-time behavior can be investigated by monitoring
the execution times and adjusting 𝐶𝐿𝑂.

B. Proposed Approach

We propose a novel learning-based run-time scheme for
determining 𝐶𝐿𝑂 to:
• Effectively reduce the nummber of system mode switches
• Have high processor utilization and, consequently, a

high value of QoS. Note that, the QoS is defined
as (𝑛𝑠𝑐ℎ𝑑

𝐿𝐶
)/(𝑛𝑚𝑎𝑥

𝐿𝐶
) [11]–[13], where 𝑛𝑠𝑐ℎ𝑑

𝐿𝐶
and 𝑛𝑚𝑎𝑥

𝐿𝐶
are the

number of LC tasks, that can be scheduled, and the number
of all LC tasks in the system, respectively

• Guarantee the system schedulability in each criticality mode
• Not be affected by sudden changes in execution times

To the best of our knowledge, there is no method yet to
determine 𝐶𝐿𝑂 of MC tasks at run-time based on the behavioral
system changes while improving the QoS.

It is a challenge to set 𝐶𝐿𝑂 for each HC task to draw a trade-
off between the objectives: system utilization and the number of
mode switches. To address the challenge, we monitor the run-
time execution times of HC tasks and adapt their 𝐶𝐿𝑂 at run-
time to achieve a higher QoS while having fewer mode switches
based on the variation in execution times due to the input
and environmental changes. The proposed approach consists
of design- and run-time phases. Here, the task schedulability
must be guaranteed at both phases, and the 𝐶𝐿𝑂 adaptation is
done at run-time. The existing MC scheduling technique, EDF-
VD [1], [3], [6] (which has been used in many studies in the
last decade), is applied. Hence, the learning process is separate
from the task scheduler, and we do not use learning techniques
for task scheduling. At run-time, reinforcement learning is used
to perform run-time management and update the 𝐶𝐿𝑂 values.

C. Evaluation

The proposed approach’s efficacy is evaluated in terms
of mode switches, and utilization waste. We conducted ex-
periments by the real benchmark, object detection function,
explained in the motivational example of Section I-A. To obtain
their execution times, we run the benchmark with various inputs

TABLE I: Number of deadline misses and gained utilization of different
methods for Object Detection function in Fig. 1, where there are many objects

Metrics Proposed [3] [6] [6] [6]
Approach 𝜆 = 1

2 𝜆 = 1
4 𝜆 = 1

8
#𝑀𝑆𝑆𝑦𝑠 17% 11% 0 5% 45%
𝑈𝑡𝑖𝑙𝑊𝑠𝑡 28% 46% 76% 52% 47%

of light and heavy traffic on Cortex A7 of the ODROID XU4
board (equipped with Ubuntu 18.04 as OS) with maximum
frequency (1.4𝐺𝐻𝑧). We compare the results with the results
of [3], [6]. As mentioned in [3], since most papers like [1],
[6], [8], consider the same policy to determine the 𝐶𝐿𝑂 (i.e.,
defining a fraction of 𝐶𝐻𝐼 as 𝐶𝐿𝑂), we select [6] as a
representative of these schemes and do the experiments with
three fractions of 𝐶𝐻𝐼 as 𝐶𝐿𝑂 (𝜆 = 𝐶𝐿𝑂

𝐶𝐻𝐼 ={ 1
2 ,

1
4 ,

1
8 }). Table I

presents the percentage of task overruns (which leads to mode
switches) and the average percentage of wasted utilization for
the proposed approach and [3], [6]. As can be seen, although the
number of mode switches in the proposed approach is higher
than the results of some scenarios, the wasted utilization is
lower compared to all other approaches (47.2% on average),
which leads to higher QoS.

II. CONCLUSION AND FUTURE WORK

This article motivated the agent-based learning to analyze
the MC tasks at run-time and determine their WCET based
on the task behavioral changes. The proposed adaptive scheme
employs the ML techniques to improve the QoS, while guar-
anteeing the task schedulability and timeliness.

In future research, we would extend our scheme by reducing
the complexity of the ML technique to reduce its timing
overhead. Besides, a design-time data set training would be
investigated to speed up the run-time learning process.

REFERENCES

[1] S. Baruah et al., “The Preemptive Uniprocessor Scheduling of Mixed-
Criticality Implicit-Deadline Sporadic Task Systems,” in ECRTS, 2012.

[2] A. Burns and R. I. Davis, “A Survey of Research into Mixed Criticality
Systems,” ACM CSUR, vol. 50, no. 6, 2017.

[3] B. Ranjbar et al., “Improving the Timing Behaviour of Mixed-Criticality
Systems Using Chebyshev’s Theorem,” in DATE, 2021.

[4] X. Gu and A. Easwaran, “Dynamic Budget Management with Service
Guarantees for Mixed-Criticality Systems,” in IEEE RTSS, 2016.

[5] B. Ranjbar et al., “BOT-MICS: Bounding Time Using Analytics in
Mixed-Criticality Systems,” IEEE TCAD, vol. 41, no. 10, 2022.

[6] D. Liu et al., “Scheduling Analysis of Imprecise Mixed-Criticality Real-
Time Tasks,” IEEE TC, vol. 67, no. 7, 2018.

[7] B. Ranjbar et al., “FANTOM: Fault Tolerant Task-Drop Aware Scheduling
for Mixed-Criticality Systems,” IEEE Access, vol. 8, 2020.

[8] H. Su et al., “An Elastic Mixed-Criticality Task Model and Early-Release
EDF Scheduling Algorithms,” ACM TODAES, vol. 22, no. 2, 2016.

[9] R. Wilhelm et al., “The Worst-Case Execution-Time Problem—Overview
of Methods and Survey of Tools,” ACM TECS, vol. 7, no. 3, 2008.

[10] C. Ballabriga et al., “OTAWA: An open toolbox for adaptive WCET
analysis,” in SEUS. Springer, 2010.

[11] B. Ranjbar et al., “Learning-Oriented QoS-and Drop-Aware Task
Scheduling for Mixed-Criticality Systems,” Computers, vol. 11, no. 7,
2022.

[12] Z. Li and S. He, “Fixed-Priority Scheduling for Two-Phase Mixed-
Criticality Systems,” ACM TECS, vol. 17, no. 2, 2017.

[13] B. Ranjbar et al., “Toward the Design of Fault-Tolerance-and Peak-Power-
Aware Multi-Core Mixed-Criticality Systems,” IEEE TCAD, vol. 41,
no. 5, 2022.

