TECHNISCHE
@ UNIVERSITAT
DRESDEN

Faculty of Computer Science Chair of Compiler Construction

Bachelor Thesis

An MLIR-based compiler flow for
memristive-crossbar accelerators

Felix Reilfmann

Born on: 8th May 2003 in Greiz
Matriculation number: 5003190

4th November 2024

First referee
Prof. Dr.-Ing. Jeronimo Castrillon

Second referee
Prof. Dr.-Ing. Diana Gohringer

supervisor

Dr.-Ing. Asif Ali Khan

Statement of authorship

| hereby certify that | have authored this document entitled An MLIR-based compiler flow for
memristive-crossbar accelerators independently and without undue assistance from third
parties. No other than the resources and references indicated in this document have been
used. | have marked both literal and accordingly adopted quotations as such. There were no
additional persons involved in the intellectual preparation of the present document. I am
aware that violations of this declaration may lead to subsequent withdrawal of the academic

degree.

Dresden, 4th November 2024

T, oifscan

Felix Reilfmann

TECHNISCHE
UNIVERSITAT
DRESDEN

Faculty of Computer Science Chair of Compiler Construction

Abstract

Compute in memory accelerators promise excellent performance and energy efficiency
compared to traditional von Neumann architectures when it comes to data intensive
applications. They aim to reduce the data movement bottleneck by performing computations
directly on the data where it is stored. While offloading computations to CIM devices comes
with time and energy savings, writing programs which take advantage of such accelerators is
a time intensive, error-prone and manual process that requires a sufficient understanding
of the underlying hardware.

This thesis presents a compilation flow using the Cinnamon compiler, which leverages the
MLIR compiler infrastructure, to automatically recognize and offload operations which could
take advantage of a memristive-crossbar accelerator. It is implemented in the Cinnamon
project, which is open source and available on GitHub. The compilation flow is explained step
by step, from a high-level PyTorch program down to the generated API calls to an accelerator
runtime library. Finally a performance and usability evaluation is conducted.

Zusammenfassung

Compute in Memory Beschleuniger versprechen eine hervorragende Leistung und Ener-
gieeffizienz fur datenintensive Anwendungen im Vergleich zu traditionellen von-Neumann-
Architekturen. Sie zielen darauf ab, den Datenbewegungsengpass zu reduzieren, indem
Berechnungen direkt am Speicherort der Daten durchgefuhrt werden. Wahrend das Aus-
lagern von Berechnungen auf CIM-Gerate mit Zeit- und Energieeinsparungen einhergeht,
ist das Schreiben von Programmen, die von solchen Beschleunigern profitieren, ein zeit-
aufwandiger, fehleranfalliger und manueller Prozess, der ein umfassendes Verstandnis der
zugrundeliegenden Hardware erfordert.

Diese Arbeit prasentiert einen Kompilationsfluss unter Verwendung des Cinnamon-Compilers,
der die MLIR-Compilerinfrastruktur nutzt, um automatisch Operationen zu erkennen und
auszulagern, die von einem memristiven Crossbar-Beschleunigern profitieren. Er ist im
Cinnamon-Projekt implementiert, welches Open Source auf GitHub verfugbar ist. Der Kom-
pilationsfluss wird Schritt fur Schritt von einem PyTorch-Programm bis zu den generierten
API-Aufrufen an eine Beschleuniger-Laufzeitbibliothek erldutert. AbschlieBend wird eine
Leistungs- und Benutzerfreundlichkeitsbewertung des durchgefuhrt.

https://github.com/tud-ccc/Cinnamon
https://github.com/tud-ccc/Cinnamon

Acronyms

CIM

CNM
CAM
MLIR

LLVM
API

Compute In Memory
Compute Near Memory
Content Addressable Memory

Multi-Level Intermediate
Representation

Low Level Virtual Machine

Application Programming
Interface

JT

ASAP
xBar
DAC
ADC
S&A
S&H

Just In Time

Intermediate Representation
As Soon As Possible
Crossbar

Digital to Analog Converter
Analog to Digital Converter
Shift and Accumulate

Sample and Hold

Contents

Abstract
Zusammenfassung
Acronyms

1 Introduction
Motivation and Goals
Design Paradigms
Compilation Flow Overview

1.1
1.2
1.3

2 Frontend
Converting PyTorch Models to Torchscript
Converting Torchscript to the Torch Dialect . . .
Additional Conversions in Torch-MLIR
Working with Quantized Models

2.1
2.2
2.3
24

3 Cinnamon
Conversion from Torch to Cinm Dialect
Tiling ...
Conversion from Cinm to Cim Dialect
Scheduling of Cim Dialect Operations
Conversion from Cim to Memristor Dialect
Conversion from Memristor to Func Dialect . . .
Memristor Runtime Library

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4 Backend
Loweringto LLVMIR
Code Generation

4.1
4.2

5 PyTorch Backend
Compiling PyTorch Models
Loading of Compiled PyTorch Models
Forwarding Calls to the Compiled Model

5.1
52
53
54

Running Inference on Compiled PyTorch Models

N

(e NN

11
11
11
12

13
13
15
15
16
17
19
19

21
21
22

23
24
24
25
25

Contents

6 Usability Analysis and Evaluation
6.1 Usability Analysis
6.2 Simulator Architecture
6.3 Benchmarking

7 Epilogue . .

7 Conclusion

7.2 Outlook

27
27
28
30

32
32
32

1 Introduction

This chapter aims to provide an overview of the full compilation flow structure, as well as
its goals. Each of the following chapters will focus on a specific section of the conversion
process.

1.1 Motivation and Goals

The compilation flow presented in this thesis aims to simplify the process of creating
applications which utilize CIM or Compute Near Memory (CNM) devices. Specifically, the goal
is to provide an easy-to-use interface for compiling PyTorch models in a way that offloads
suitable computations to a memristive-crossbar accelerator. This would significantly reduce
the barrier to entry for developers who want to utilize these devices in their applications.
Additionally, models compiled with this compilation flow should benefit from the energy
efficiency and high throughput of memristive-crossbar accelerators. The flow should be
modular, in order to allow for easy extension and modification in the future. Extensibility
is especially important, since the field of memristive-crossbar accelerators is still rapidly
evolving and new devices with different characteristics are constantly being developed.

1.2 Design Paradigms

The MLIR compiler infrastructure is quickly becoming the de-facto standard for building
compilers targeting novel hardware architectures. This is due to its flexibility, extensibility and
a large set of builtin functionality. The presented compilation flow also builds on top of this
infrastructure, as it removes the need of designing a custom compiler from scratch. MLIR
provides all its functionality around a set of dialects, which are used to represent programs
in different aspects as well as levels of abstraction. All dialects build upon a common syntax,
making it possible to use multiple dialects in a single program. This enables the reuse of
existing dialects in newly developed ones. For transformation within a dialect or conversion
between dialects, MLIR provides a pass system. Passes usually focus on accomplishing a
single task, making them easy to understand and less error prone. The modularity in the
dialects and passes, as well as the large library of builtins, makes MLIR a powerful tool for
building compilers. Third party projects like Torch-MLIR, which is also used in this compilation
flow, provide further dialects and passes.

1 Introduction

1.3 Compilation Flow Overview

As the flow focuses on the compilation of PyTorch models, a frontend is needed to convert
the PyTorch model into an MLIR representation which is used during the majority of the
compilation process. This frontend is provided by the Torch-MLIR project and will be
discussed in detail in Chapter 2. All main conversions necessary for offloading computations
to CIM devices are provided by the Cinnamon compiler, for which additional dialects and
passes were developed as part of this thesis. The Cinnamon compiler aims to provide the
infrastructure needed, not just for targeting CIM devices, but also other novel hardware
architectures like CNM and Content Addressable Memory (CAM) devices. The conversions of
the Cinnamon compiler are explored in Chapter 3. The final steps of the compilation, which
need to produce executable binaries, are handled by the Low Level Virtual Machine (LLVM)
project, which the MLIR project is part of. The LLVM based conversions are covered in
Chapter 4. Figure 1.1 shows a simplified overview of the complete compilation flow.

R (oo S —
[Lrene_}——{(memestr }——{Tam_}——{(em }—

-
R (7) shoredotien |

Legend:
@D Program representation ® Torch-MLIR ® Python
—> Conversion ® Cinnamon © Other

® MLIR

Figure 1.1: Compilation flow overview

Each row of conversions in Figure 1.1 represents a different stage of the compilation flow. The
PyTorch model, which forms the input of the flow, is first compiled into torchscript using
the PyTorch Just In Time (JIT) compilation. This torchscript representation of the model
is then converted to the torch MLIR dialect. The torch dialect as well as the conversion
from torchscript are provided by the Torch-MLIR project. After these steps, the model
is in a form that can be used by tools built with the MLIR infrastructure. After the torch
dialect, the compilation flow splits into two paths. The upper path is used for operations
that can be offloaded to CIM devices. For this, the torch dialect representation is lowered
by Cinnamon to the cinm dialect. This dialect is the main entrypoint dialect of Cinnamon and
is used for representing operations that can be further lowered onto CIM or CNM devices.
All operations which are not representable in the cinm dialect are lowered to the 1inalg
dialect by passes provided by Torch-MLIR. The 1inalg representation is then lowered via
the scf and cf dialects to the 11vm dialect by builtin MLIR passes.

All operations that were previously successfully converted to the cinm dialect are now
lowered via the cim dialect to the memristor dialect. During these conversions, further
transformations are applied to reshape the operations into a form that can be executed on
CIM devices. The memristor dialect is the target dialect for memristive-crossbar accelerators
in Cinnamon and closely resembles APl endpoints of runtime libraries for such CIM devices.
As a final step in the Cinnamon based pipeline, all operations in the memristor dialect are

1 Introduction

converted to runtime API calls represented in the func dialect. The func dialect is a builtin
MLIR dialect and can easily be lowered to the 11vm dialect. At this point the split paths are
rejoined as all operations are now represented in the 11vm dialect.

The 11vmdialect representation is then converted into LLVM Intermediate Representation (IR)
and compiled into a shared object by mlir-translate and clang respectively, which are
tools provided by the LLVM project. This is the final output of the compilation flow and can
be executed on a host machine. The shared object contains the compiled model as well as
all necessary runtime library calls to the CIM device. The runtime library is not linked into
the shared object directly, as it is not part of the compilation flow itself, and needs to be
provided separately.

© o N o o A W N =

2 Frontend

In this chapter, the conversion of PyTorch models to torchscript and further to the torch
MLIR dialect will be discussed. These conversions are also shown in the top row of Figure
1.1.

The needed functionality is fully provided by the Torch-MLIR project. It can be invoked
using the torch_mlir Python module, as shown in Listing 2.1. The same torch_mlir APl is
also wrapped in the cinnamon module as part of the Cinnamon PyTorch backend, which is
presented in Chapter 5. For completeness, a subset of steps happening under the hood in
the torch_mlir module are discussed in the following sections.

torch
torch_mlir

(torch.nn.):
__init__(self):
(, self).__init__()

self.fc1 torch.nn. (5, 5)
self.fc2 = torch.nn. (5, 10)
self.fc3 = torch.nn. (10

forward(self,

x = self.fcl1(x

x = self.fc2(x

x = self.fc3(x
X

X) .
)
)
)

model = O
sample_input = torch.randn(5)

torch_mlir_representation = torch_mlir.compile(model, sample_input)

Listing 2.1: Conversion of a PyTorch model to the torch dialect using the torch_mlir Python module

10

13, T O VR N -

2 Frontend

2.1 Converting PyTorch Models to Torchscript

The MLIR based tools provided by Torch-MLIR need an MLIR representation of the PyTorch
model and as such cannot receive Python objects directly. Instead, the model is first converted
to another intermediate representation named torchscript . It is part of PyTorch and
used mainly used for model serialization, optimization and interoperability with other tools
and languages. As such, the compilation of PyTorch models to torchscript is provided
by PyTorch itself and is easily invoked as shown on line 5 in Listing 2.2. The result of this
operationis a torch.ScriptModule Python object, which is a wrapper around the generated
torchscript representation of the model.

torch
model = () #torch.nn.Module, as seen in previous listing

script_module = torch.jit.script(model)

Listing 2.2: Conversion of a PyTorch model to torchscript

2.2 Converting Torchscript to the Torch Dialect

After the torch.ScriptModule has been created, the models forward function, which is
the function needed for inference, is traced. The tracing step is also built into PyTorch and
returns a graph of functions that are invoked when running the forward function. This
graph is then passed to a ModuleBuilder, which is part of Torch-MLIR and written in C++. It
converts the graph into a raw MLIR representation, where each of the traced functions is
defined separately. Since the module is now encoded in MLIR, all further conversions can
be done using the MLIR infrastructure. As a final step, the forward function in the produced
MLIR code is completely flattened by inlining all subfunctions, which results in a MLIR module
with a single forward function defined.

2.3 Additional Conversions in Torch-MLIR

The Torch-MLIR project provides a range of further conversions which use the torch dialect
as a starting point. The conversion from the torch dialect to the 1inalg dialect is used by
this compilation flow to lower operations that are not representable in the cinm dialect. As
the 1inalg dialect is a MLIR builtin dialect, any further lowering towards the 11vm dialect
can be achieved using builtin MLIR passes. Torch-MLIR also provides conversions to the
tosa dialect. TOSA stands for Tensor Operator Set Abstraction and is a dialect developed
by the MLIR community to represent tensor operations. This dialect is currently unused by
the compilation flow, but conversions from it to cinm might be implemented in the future
to allow for a bigger set of fontends to be used with the Cinnamon compiler. Additional
conversion passes are present, which can be used to convert a subset of torch operations
to the std or scf dialects.

Torch-MLIR also provides a large set of transformation passes. Some of them are used by
the compilation flow to canonicalize the MLIR code before further lowering to cinm. Others
may be used to optimize, by inlining, fusing and decomposing operations.

11

2 Frontend

2.4 Working with Quantized Models

The conversion of PyTorch models to the torch dialect works for a wide range of PyTorch
models. However, there are some limitations. Memristive-crossbar devices are only able
to execute matrix multiplications on integer values. Because of this, models trained with
floating point precision need to be converted to use integer operations. This process is called
quantization and is also provided by PyTorch. There are different strategies for quantization,
but they all aim to reduce the value precision used by the model while keeping its prediction
accuracy as high as possible.

The tools used in the compilation flow are currently set up using the latest LLVM (and MLIR)
release 19.1.3. The Torch-MLIR version, which is compatible with this release unfortunately
still has an extremely limited support for quantized models. The support has steadily
improved in the latest releases of Torch-MLIR. Additionally, newer versions of LLVM with a
more extensive quant dialect promise to provide a more complete support. With the current
setup, automatically quantized models are unusable in the compilation flow. However, it is
possible to manually quantize very small models which can be compiled successfully.

Manually quantizing a model consists of creating a structural clone of the original model. Each
layer is recreated manually by choosing and inserting the needed quantization operations
before the actual layer computation. The quantization is then undone on the result tensor.
This process is very error prone and time consuming, but it is sufficient for small models as
a proof of concept. Future versions of Torch-MLIR will hopefully allow for a more automated
quantization process and compilation of larger models.

12

3 Cinnamon

This chapter will focus on all conversions performed by the Cinnamon compiler. It provides
a step by step examination of all intermediate dialects and performed transformation and
lowering passes. This part of the compilation flow is represented by the second row of
conversions in Figure 1.1.

3.1 Conversion from Torch to Cinm Dialect

The cinm dialect is the main entrypoint dialect of Cinnamon. It provides a wide range of
operations which may be available on specific CIM and CNM devices. The subset of cinm
operations used by the compilation flow is shown in Table 3.1.

Operation signature Description

cinm.compute -> %result Scoped block operation containing
potentially multiple cinm.ops

cinm.yield %result Terminator operation of cinm.compute

cinm.op.gemm %lhs %rhs -> %result | General matrix-matrix multiplication

cinm.op.gemv %lhs %rhs -> %result | General matrix-vector multiplication

Table 3.1: Relevant cinm operations

Cinnamon provides a conversion pass from the torch dialect to the cinm dialect. This pass
is responsible for lowering all torch operations that are planned to be offloaded to cinm.
An example torch dialect input is shown in Listing 3.1. Currently only torch operations
representing matrix-matrix and matrix-vector multiplications are considered for lowering.
When the compilation flow is extended to support targets other than memristive-crossbar
devices, additional operations may be considered as well.

For this input, the conversion pass will lower only the torch.aten.mm operations on lines
11 and 15 in Listing 3.1. All other operations will be left unchanged. For each lowered
operation, a new cinm.compute block is created. This block contains the cinm equivalent
for the replaced torch operation. It is terminated by cinm.yield, which can be thought of
as returning the result to the outside region. An example of the generated operations to
replace the first torch.aten.mmon line 11 in Listing 3.1 is shown in Listing 3.2.

13

[N R N

3 Cinnamon

module attributes {torch.debug_module_name = "Model"} {
func.func @forward(%arg@: !'torch.vtensor<[1,5], !torch.qint16>) ->

— l!torch.vtensor<[1,2], 'torch.qint16> {

// constants and model parameters defined above:

// %int@ : Itorch.int; %int1 : Itorch.int

// %b0 : Itorch.vtensor<[3], torch.qint16>

// %w@ : ltorch.vtensor<[3,5], torch.qint16>

// %b1 : Itorch.vtensor<[2], Itorch.qint16>

// %wl : ltorch.vtensor<[2,3], !torch.qint16>

%tw@ = torch.aten.transpose.int %w@, %int@, %int1 : ... ->

< ltorch.vtensor<[5,3], 'torch.qint16>
%m@ = torch.aten.mm %arg@, %tw@ : ... -> !torch.vtensor<[1,3], !torch.qint16>
%r0 = torch.aten.add.Tensor %m@, %b0, %int1 : ... ->

<+ ltorch.vtensor<[1,3], 'torch.qint16>

%twl = torch.aten.transpose.int %wl, %int@, %int1 : ... ->
— ltorch.vtensor<[3,2], 'torch.qint16>
%m1 = torch.aten.mm %r@, %twl : ... -> !torch.vtensor<[1,2], !torch.qint16>
%r1 = torch.aten.add.Tensor %m1, %b1, %intl : ... ->
< ltorch.vtensor<[1,2], 'torch.qint16>
return %r1 : !torch.vtensor<[1,2], 'torch.qint16>

Listing 3.1: Two layer dense model represented in the torch dialect

%bargd = torch_c.to_builtin_tensor %argd : ... -> tensor<lIxbxil6>
%btwd = torch_c.to_builtin_tensor %tw@ : ... -> tensor<5x3xi16>
%bm@ = cinm.compute -> tensor<Ix3xil6> {
%bre = cinm.op.gemm %barg@, %btwd : (...) -> tensor<Ix3xil16>
cinm.yield %br@ : tensor<1x3xi16>
}
%M@ = torch_c.from_builtin_tensor %bm@ : ... ->
< ltorch.vtensor<[1,3], 'torch.qint16>

Listing 3.2: Replacement operations for torch.aten.mm

The torch dialect uses the value tensor type !torch.vtensor for all its operations. It is
equivalent to the MLIR builtin tensor type but uses value semantics instead of reference
semantics. This simplifies the analysis of operations during the conversion process from
torchscript to the torch dialect, which was discussed in Section 2.1. Cinnamon uses
the builtin tensor type for all its operations. This means that all tensors used by cinm
operations need to be cast to the builtin tensor type. Similarly, all tensors generated by
cinm operations need to be cast back to the !'torch.vtensor type to remain compatible.
The inserted cast operations can be seen in Listing 3.2 on lines 1, 2 and 7. The placement of
the cast operations in the MLIR code is important. They always need to be inserted at the
point where the argument to the respective cast operation was produced. If the placement
is not correct, subsequent passes will fail to remove redundant casts between the types,
which will cause further lowering down the line to fail.

14

3 Cinnhamon

3.2 Tiling

Once all offloadable operations have been lowered to the cinm dialect, a tiling pass needs to
be performed. Similarly to other CIM and CNM devices, memristive-crossbar devices have a
limited size of computational units. This means that the matrix sizes of the operands need to
be limited to fit onto the device crossbars. The tiling pass is responsible for splitting up any
matrix multiplication into multiple smaller multiplications if necessary. For this purpose, the
tiling pass receives potentially tiered sizing information for the specific device that is targeted
by the operation. This is needed as the pass is written in a way that it can be used for all
device types supported by Cinnamon, not just devices with a single tier of computational
units. The multiple sub-results produced by the split matrix multiplication are combined
afterwards to recreate the original result.

This means that after the tiling pass has been applied, the original operation may now be
placed in a loop, where on each iteration one sub-operation will be executed. Depending on
how many crossbars are available on the target device, these operations may be able to
executed in parallel. In order for this to be possible, the loop needs to be unrolled and the
resulting multiple compute blocks need to be fused into a single compute block. This has
currently not been implemented in Cinnamon, but should be considered in the future to
allow for optimal use of all device resources. The downstream cim and memristor dialects, as
well as associated passes, are already set up in a way to allow multiple concurrent operations
to be dispatched and awaited.

Once the tiling pass has been successfully applied, it is guaranteed that all operations can
be executed on the target device, and further lowering may proceed.

3.3 Conversion from Cinm to Cim Dialect

For CIM device targets, the next pass lowers the cinm ttcinm dialeccim the cim dialect. The
cim dialect is the main dialect for all CIM devices, and as such only provides the subset
of operations that can be executed on them. Additionally it introduces explicit resource
acquisition and release. For each cim operation, the to be used device and crossbar have to
be specified. The dialect also changes the semantics of each operation to be asynchronous.
This means that the operations themselves only represent computation dispatch, while
the cim.barrier operation is used to synchronize and await the computation results. This
asynchronicity is needed to model multiple concurrent computations on the device. The
cim.barrier operation also allows for different scheduling strategies to be enforced on the
computation graph, allowing optimal use of all device resources. This is further explored in
Section 3.4. A full list of all cim operations is shown in Table 3.2.

During the conversion, the nesting of operations into a compute block is removed. The
scope of the computation is now defined implicitly by the cim.acquire_device and
cim.release_device operations. This allows for further flexibility when inserting other
computations, unrelated to those on the CIM device, between the cim operation dispatches
and cim.barrier operations. This may be beneficial for performance as it allows for better
utilization of the host CPU while the CIM device is busy. The result of lowering the operations
in Listing 3.2 to the cim dialect is shown in Listing 3.3.

15

© @ N o o A W N =

3 Cinnhamon

Operation signature Description
cim.acquire_device -> %deviceld | Acquire a device
cim.acquire_crossbar %deviceId | Acquire a crossbar onthe
-> %xbarId specified device
cim.op.gemm %xbarId %lhs %rhs General matrix-matrix multiplication
-> %future
cim.op.gemv %xbarId %lhs %rhs General matrix-vector multiplication
-> %future
cim.barrier %future Await results of computation associated
with the future
cim.release_crossbhar %xbarId Release the specified crossbar
cim.release_device %deviceld Release the specified device

Table 3.2: Relevant cim operations

%bargd = %argd : ... -> tensor<1x5xil6>
%btwo = %twd : ... -> tensor<bx3xil6>
%dev = -> lcim.deviceld
%xbar = %dev : ... -> lcim.crossharId
%futd = %xbar, %barg@, %btwo : ... -> lcim.future<1x3xi16>
%bm@ = %fut® : 'cim.future<Ix3xil6> -> tensor<1x3xil6>
%xbar : !cim.crossbarId
%dev : l'cim.deviceld
%Mo = %bmo ... ->

I'torch.vtensor<[1,3], 'torch.qint16>

Listing 3.3: Replacement operations for cinm.op.gemmin the cim dialect

3.4 Scheduling of Cim Dialect Operations

As the cim dialect introduced explicit resource handling, all operations need to be
scheduled onto the available computational resources. In the case of memristive-crossbar
devices, the information regarding available crossbars was attached to the cinm.compute
operation during the tiling pass. This information was then reattached to the generated
cim.acquire_device operation during the lowering to the cim dialect.

Scheduling of cim operations can be performed by a range of scheduling passes, which
implement different scheduling strategies. These passes built on top of a modular scheduling
framework for side-effect free operations provided by Cinnamon. The scheduling framework
allows for easy implementation of new scheduling strategies based on operation dependency
graphs and available computational resources. The resulting modularity allows for use case
specific scheduling problems to reuse existing scheduling strategies.

When implementing a scheduling pass using the scheduling framework, a set of hooks for
the scheduling driver need to be specified. They are listed in Table 3.3.

The hooks are designed to be as generic as possible, making the scheduling framework usable
for a wide range of operation scheduling problems. The rescheduleOperationFilter,
operationScheduler and barrierInserter hooks are implemented specifically for the
cim scheduling passes. They are trivial to implement, often only requiring one line of code.
The schedulingStrategy hookis the mostimportant hook and is responsible for generating
the operation schedule. Any of the reusable scheduling strategies can be used as a functor

16

3 Cinnhamon

Hook name Description

rescheduleOperationFilter | A predicate for filtering which operations will be
considered for rescheduling. For cim scheduling
passes this includes all cim.op operations.
schedulingStrategy A chosen scheduling strategy in form of a functor
which accepts a dependency graph and number of
computation resources and returns an operation
scheduling. The operation scheduling describes
when each operation should be dispatched and
awaited.

operationScheduler A function which when supplied with an operation
and a resource reschedules the operation onto the
resource. Any changes to the position of the
operation in the program will be handled by the
scheduling driver and do not need to be
implemented.

barrierInserter A function which returns an awaiting operation linked
to the passed operation. The returned operation will
be inserted at the correct position by the
scheduling driver.

Table 3.3: Scheduling framework hooks

for this hook. The scheduling strategies are implemented as separate classes and can be
easily extended or replaced.

To invoke the scheduling driver, two parameters in addition to the hooks need to be specified.
The first parameter is a list of scheduling roots, from which the operation dependency graph
will be generated. The second parameter is a list of available computational resources. For
the cim scheduling passes, both of these parameters are generated by another shared
function. It analyzes the implicit computation block marked by the cim.acquire_device and
cim.release_device operations and finds all values generated by cim tttcim operations
which are escaping the block. These values represent the scheduling roots. It also inserts
additional cim.acquire_crossbar operations for each crossbar available on the device.
The results of these operations are then passed as the available computational resources to
the scheduling driver. During these preparations, all cim.barrier operations are removed
from the program in preparation for rescheduling. The collected information is forwarded
to the scheduling driver, which will handle the scheduling of all cim operations. Listing 3.4
shows the simple and modular implementation of a cim scheduling pass.

3.5 Conversion from Cim to Memristor Dialect

The memristor dialect is the target dialect for all memristive-crossbar devices as it models
common runtime API calls. A list of all memristor operations is shown in Table 3.4.

The lowering pass from the cim tttcim tttcim to memristor dialect converts all cim operations
to their memristor counterparts. The cim.acquire_device and cim.acquire_crossbar
operations are replaced by integer values representing the device and crossbar id.
Additionally, operations to bufferize all tensor operands into memrefs are inserted. This is
in preparation for the final conversion to the func dialect, which will generate runtime AP

17

© @ N g A~ W N =

© ® N o o A W N =

- ©

3 Cinnamon

// Scheduler used for this pass
using Scheduler = cinm::utils::scheduling::AsapScheduler<Value>;

// Remove all barriers, find roots, get available crossbars
auto [crossbars, roots] = prepareForScheduling(acquireDeviceOp, rewriter);
Scheduler<Value> scheduler{crossbhars};

// Define modular scheduling hooks

cinm: :utils::scheduling: :SchedulingHooks<Value> hooks{
.rescheduleOperationFilter = isCimOp,
.schedulingStrategy = scheduler, // simplified
.operationScheduler scheduleCimOpOnCrossbar,
.barrierInserter = insertBarrierForCimOpResult};

// Run the scheduling
cinm::utils::scheduling: :applyScheduling(rewriter, roots, hooks);

Listing 3.4: As Soon As Possible (ASAP) scheduling pass implementation for cim dialect

Operation signature Description
memristor.write_to_crossbar %xbarId %rhs | Write operand to crossbar
memristor.gemm %xbarId %lhs %result General matrix-matrix multiplication
memristor.gevm %xbarId %lhs %result General vector-matrix multiplication
memristor.barrier %xbarId Wait for computation to finish

Table 3.4: Relevant memristor operations

calls that have no representation of the tensor type. The generated memref operands are
representable by data pointers and associated sizing information. The bufferization also
requires, that the space for computation results needs to be allocated explicitly before the
computation is dispatched. All allocation and bufferization operations are provided by
the bufferization dialect, which is a builtin MLIR dialect. The result of lowering Listing 3.3
to the memristor dialect is shown in Listing 3.5.

%barg@ = torch_c.to_builtin_tensor %arg® : ... -> tensor<1x5xi16>
%btwo torch_c.to_builtin_tensor %tw@ : ... -> tensor<5x3xi16>
%xbar = arith.constant @ : i32
%res = bufferization.alloc_tensor() : tensor<1x3xi16>
%lhsb = bufferization.to_memref %barg® : memref<1x5xi16>
%rhsb = bufferization.to_memref %btwd : memref<5x3xil16>
%resb = bufferization.to_memref %res : memref<1x3xil6>
memristor.write_to_crosshar %c@0_i32, %rhsb : 132, memref<5x3xil16>
memristor.gemm %xbar, %lhsb, %resb : 132, memref<Ix5xil16>, memref<Ix3xil16>
memristor.barrier %xbar : i32
%m@ = torch_c.from_builtin_tensor %res : ... ->

<+ ltorch.vtensor<[1,3], 'torch.qint16>

Listing 3.5: Example of cim tttcim operations lomemristor emristor dialect

In preparation for the final conversion to the func dialect, all memristor operations have a
library call name attached to them. This name encodes the type of operation, as well as the
integer type of the operands. The library call name will be used as the symbol name for the
runtime API call references when converting to the func dialect.

18

3 Cinnhamon

3.6 Conversion from Memristor to Func Dialect

This final lowering pass converts allmemristor operations to runtime API calls modeled in the
func dialect, which is a builtin MLIR dialect. For each memristor operation, a corresponding
runtime function declaration is generated. The symbol names are the library call names
attached to the memristor operations. Parameter types are derived from the operand
types of the memristor operations. Notably, all memrefs are converted to dynamically sized
memrefs, as multiple operations of the same type, but with differently sized operands will
use the same APl endpoint. All function declarations needed for Listing 3.5 are shown in
Listing 3.6.

@memristor_write_to_crossbar_i16(i32, memref<?x?xi16>)
@memristor_gemm_i16(i32, memref<?x?xi16>, memref<?x?xi16>)
@memristor_barrier(i32)

Listing 3.6: Function declarations for memristor operations

3.7 Memristor Runtime Library

The lowering pass from memristor to func has created calls to runtime API functions.
These functions need to be implemented in a runtime library which is then linked to the
final executable. The runtime library needs to provide the actual implementation of the
API calls. This can be achieved by forwarding the calls to a third party implementation or
device driver. For testing and validation purposes, Cinnamon provides a simple runtime
library implementation, which can execute all operations directly on the host CPU or
conditionally forward them to a memristive-crossbar simulator written in C++. Further
details regarding the simulator can be found in Chapter 6. This section will focus on the
interface implementation of the runtime library in C.

After the output of the previous steps has been successfully lowered to the 11vm dialect,
as will be discussed in Chapter 4, the function definitions from Listing 3.6 will have been
converted into a C compatible form as shown in Listing 3.7.

Mainly, all of the 2d memref parameters will have been converted to 7 parameters each:

+ The base pointer to the start of the memory region referenced into by the memref.
+ The data pointer to the actual start of the data for this memref.

+ An integer with the offset of the first element in the data pointer.

+ The number of elements in the first dimension.

+ The number of elements in the second dimension.

+ The stride of the first dimension.

* The stride of the second dimension.

The conversion of 1d memrefs used by the memref_gevm operation is analogous, resulting in
5 parameters.

All interface functions in the runtime library will match the signatures shown in Listing 3.7.
The first step in each of the interface functions is to repackage the multiple memref related
parameters back into a structured form. Afterwards, in the case of the runtime library
included in Cinnamon, these repackaged arguments are passed to a templated C++ function

19

3 Cinnamon

@memristor_write_to_crossbar_i16(i32, !llvm.ptr, !llvm.ptr, i64, i64,
i64, i64, i64)

@memristor_gemm_i16(i32, !'1lvm.ptr, !'1llvm.ptr, i64, i64, i64, i64,
i64, !'llvm.ptr, !1lvm.ptr, i64, i64, i64, i64, i64)

@memristor_barrier(i32)

Listing 3.7: Memristor runtime library function definitions

for each operation. This removes the need for a separate implementation for each integer
type.

To further avoid two implementation for matrix-matrix and matrix-vector multiplication, the
memristor_gevm function just repackages the vector argument into a matrix. This allows the
vector-matrix multiplication to be implemented in terms of the matrix-matrix multiplication.
The result is then repackaged back into its vector form. Importantly this does not require
any expensive copying of data, but only modification of memref metadata. The templated
memref_gemm function performs the actual computation and writes the result back into
the result memref. In both cases the memristor_write_to_crossbar operation is used to
write the second operand into a crossbar buffer beforehand, from which it is retrieved
during computation. As this runtime library implementation is currently single-threaded, the
memristor_barrier operation is a no-op.

Before each computation, the library checks if the memristive-crossbar simulator discussed
in Section 6.2 is available. If so, the computation is forwarded to the simulator instead of
being executed on the host CPU. This allows for easy testing, of and with the simulator.

20

4 Backend

The output of the pipeline discussed in Chapter 3 is still MLIR code and as such not directly
executable. This chapter will discuss the conversions shown in row 3 and 4 in Figure 1.1,
which are needed to lower the MLIR code produced by Cinnamon and Torch-MLIR to LLVM
IR and compile further into a shared object.

4.1 Lowering to LLVM IR

In order for any code generation using the LLVM compiler infrastructure to take place, the
program has to be fully converted to the 11vm dialect. At the current point in the compilation
flow, the output of the Cinnamon pipeline includes operations from the bufferization, memref,
arith and func dialects. Additionally, all operations that bypassed the Cinnamon pipeline
are still a mix of torch and func dialects.

To allow further conversions to use builtin MLIR passes, the torch dialect has to be completely
removed from the program. This is done by applying a set of passes which, among other
things, convert all torch operations to the 1inalg dialect as well as replacing all torch types
with builtin types. If these passes succeed, the torch dialect will no longer be present in the
program. Although now no longer in the torch dialect, all operations which bypassed the
Cinnamon pipeline are still represented at a higher level of abstraction than the operations
that went through it. To bring all operations to a similar level, next, multiple bufferization
and canonicalization passes are applied. These passes will remove the tensor type from
the program and replace it with memref types. The argument and return types of the
forward function will now also becomememrefs. During the canonicalization passes, the now
redundant tensor casts introduced by the torch to cinm conversion will also be removed.
Next, the 1inalg dialect is lowered, first to the scf dialect and then further to the cf dialect.
This will bring all operations to a similarly low level of abstraction. The arith, func and cf
dialects can now be converted to the 11vmdialect. Finally, also the memref dialect is converted
to llvm, again changing the signature of the main inference function to a format similar to
the one discussed in Section 3.7. As a final preparation step for the export to LLVM IR, a
canonicalization pass is applied to remove any remaining redundant operations. Additionally
the reconcile-unrealized-castsand 11vm-legalize-for-export passes are applied to
remove any remaining unsupported operations and to legalize the program for export to
LLVM IR. If all of the mentioned passes succeed, the program is now ready for export.

21

4 Backend

4.2 Code Generation

For the conversion from the 11vm MLIR dialect to LLVM IR, themlir-translate tool, provided
by the LLVM project, is used. This tool is able to convert between the slightly different syntaxes
of the 11vm MLIR dialect and the LLVM IR. After invoking mlir-translate and generating
LLVM IR, the clang compiler is used to compile the LLVM IR into a shared object. As shown
in Figure 1.1, the shared object is the final product of the compilation flow. Running inference
using this compiled PyTorch model will be discussed in Chapter 5.

22

© o N o o A W N =

5 PyTorch Backend

To make the compilation flow usable directly from Python, without manually invoking all
the steps discussed in the previous chapters, the Cinnamon project also includes a Python
module. This module provides, similarly to the torch_mlir module from Torch-MLIR, an
easy-to-use, high level interface to the compilation flow. The process of compiling, loading
and running inference on a PyTorch model using the cinnamon Python module is shown in
Listing 5.1.

torch
from cinnamon.torch_backend.cinm CinmBackend

(torch.nn.)
__init__(self):
(, self).__init__()

self.fcl
self.fc2
self.fc3

torch.nn. (5, 5)
torch.nn. (5, 10)
torch.nn. (10, 2)

forward(self,
x = self.fcl

X) .
(x)
x = self.fc2(x)
(x)

X self.fc3
X

model = O
sample_input = torch.randn(5)

backend = CinmBackend()

compiled_model = backend.compile(model, sample_input)
model_invoker = backend.load(compiled_model)

Listing 5.1: Example of compiling, loading and running inference on a PyTorch model using the Cinnamon
PyTorch backend

23

5 PyTorch Backend

5.1 Compiling PyTorch Models

The cinnamon Python module provides a CinmBackend class which can be used to invoke the
full compilation flow from Python. The class has a compile method as seen in Listing 5.1 line
21, which takes a module and a sample input tensor as arguments. Internally, the module will
first be converted into a torch dialect MLIR representation using the torch_mlir.compile
function discussed in Chapter 2. An analysis pass then extracts the signatures of all functions
defined in the torch dialect MLIR code. This information is laster required for loading the
compiled model back into Python.

The CinmBackend class currently defines a static pass pipeline for the lowering, which targets
memristive-crossbar accelerators. This pipeline together with the MLIR representation of
the PyTorch model is then passed to the Cinnamon pass runner. The pass runner applies all
passes in the order specified by the pipeline. This results in the MLIR code being lowered to
the 11vm dialect as discussed in Chapter 3 and Chapter 4. Next the mlir-translate tool
as well as clang are invoked to convert the 11vm MLIR code to LLVM IR, and compile into a
shared object. The shared object and the previously extracted signatures are then packaged
into a CompiledModel Python object and returned to the user.

5.2 Loading of Compiled PyTorch Models

The CompiledModel object produced by the previous step provides functionality for saving
and loading itself to and from disk. This may be useful in cases where the compiled model
is distributed rather than the original PyTorch model. Or in cases where recompiling the
model is not desired.

In order for the compiled model to become useable, it has to be loaded and made accessible
from Python. This functionality is provided by the load method of the CinmBackend class
as seenon line 22 in Listing 5.1. The load method takes the CompiledModel object as an
argument and returns a textttModellnvoker object. This object aims to provide a similar
interface to the original PyTorch model, in order to make the transition from the PyTorch
model to the compiled model as seamless as possible. The 1load method internally just
forwards the CompiledModel object to the ModelInvoker constructor along with a list of
paths to runtime libraries. An example of such a runtime library is the memristor runtime
presented in Section 3.7.

The ModelInvoker constructor then first loads the specified runtimes into the Python
environment. This is done using the dll loader provided by the standard ctypes module.
After loading all runtimes, the shared object stored in the CompiledModel can also loaded.
As the ModelInvoker should provide a similar interface to the original PyTorch model, it also
needs to have the relevant functions. Using the list of extracted signatures, which is also
stored in the CompiledModel, the ModelInvoker object creates wrappers for all functions
defined in the shared object and registers them as methods of itself. The structure of the
wrapper functions will be discussed in Section 5.3. After all functions have been wrapped,
the ModelInvoker object is returned to the user.

24

5 PyTorch Backend

5.3 Forwarding Calls to the Compiled Model

During the lowering process of the PyTorch model, the required parameters to the forward
functions were converted from the original PyTorch tensors first to memref types and then
to a set of pointers and integers. As such, the interface cannot directly be used with PyTorch
tensors anymore. In order to hide this complexity from the user, each function in the shared
object is wrapped by the ModelInvoker object.

The created wrapper functions need to perform two main tasks. First, they need to convert the
passed arguments to the format expected by the function in the shared object. Second, they
need to provide the storage for the result tensor which is passed to the function in the same
way as the other arguments, but requires some additional handling after the function has
been invoked. During the lowering described in Section 5.1, the 11vm-request-c-wrappers
pass was run. This pass resulted in the creation of C interface wrappers in the shared object.
These wrappers take memref arguments as pointers to a memref descriptor structure instead
of the set of pointers and integers. This allows for cleaner code in the Python wrapper
functions.

To achieve task one, each tensor argument needs to be converted to a memref descriptor
structure. This is done by first enforcing the tensor to be contiguous in memory and then
extracting the data pointer, the sizes and the strides of the tensor. These are written to
the memref descriptor structure expected by the requested C wrappers. The structure is
created with a C compatible layout by using the ctypes module. Finally pointers to the
Created structures are passed to the function in the shared object.

The first step for the second task is to create a result tensor with the same shape and
data type as the expected return type from the original PyTorch model. This information is
looked up in the extracted signatures. The created result tensor is then converted to the
memref descriptor structure in the same way as the input tensors. After the function has
been invoked with all generated arguments, the result tensor may not have been written
to directly. In some rare cases, an optimization may have caused the data pointer in the
memref descriptor structure to be updated, instead of the data it originally pointed to. This
change would not be reflected in the Python result tensor object. If this is detected, the data
at the changed pointers is copied back into the result tensor. Finally, it is returned to the
user.

Although the Torch-MLIR compilation currently only compiles the models forward function,
which is needed for inference, the compilation and loading process in the cinnamon module
is already designed to support multiple functions, should this become necessary in the
future. Additionally, only argument of the tensor type are allowed during the Torch-MLIR
compilation. The wrapper functions in the Mode1lInvoker object however are designed to
support wrapping of any parameter type, as long as a wrapper object was registered for
it. This allows for easy extension of the compilation flow to support additional types of
parameters in the future.

5.4 Running Inference on Compiled PyTorch Models

The ModelInvoker object returned by the load method provides a similar interface to
the original PyTorch model. This means that the user can call the forward method of the
ModelInvoker object with the same arguments as the original PyTorch model. As discussed
in the previous section, the ModelInvoker will then handle all necessary conversions and

25

5 PyTorch Backend

invoke the underlying function in the shared object. The result tensor is then returned to
the user in the same format as the original PyTorch model would have returned it.

Other operations than inference, notably training are not supported by the ModelInvoker
object. This is due to the fact that the compiled model does not include the necessary
operations for training, such as backpropagation. Additionally, any changes to the model, such
as modifying weights, are not possible. The compiled model is a static representation of the
model at the time of compilation and cannot be changed afterwards without recompiling.

26

6 Usability Analysis and Evaluation

This chapter will evaluate the usability of the compilation flow and provide some bench-
marking results based on a simulated memristive-crossbar accelerator. An evaluation on
actual hardware is not possible at this time, as no memristive-crossbar accelerator is cur-
rently available. The simulator is based on a existing hardware architecture and resulting
performance numbers should be indicative of what can be expected on actual hardware.

6.1 Usability Analysis

Because the compilation flow is built on top of the MLIR compiler infrastructure, it is
highly modular in nature. Extending it with alternative frontends only requires adding a
conversion from the frontends intermediate representation to the cinm MLIR dialect used
as an entrypoint for the Cinnamon compiler. Conversion passes at this level mostly consist
of one-to-one mappings of operations to the cinmdialect. In some cases the addition of new
conversion passes may not even be necessary, as already supported dialects may be used
as a stepping stone to the cinm dialect. The same is true for adding support for additional
target devices. The memristor dialect provides a solid foundation for new backend dialects
to be built on top of. For some devices, the operations may even be directly mappable to the
device's runtime library calls. Writing a runtime library like discussed in Section 3.7, which
forwards the calls to the device's runtime would be sufficient in this case. The Cinnamon
compiler is built with this kind of extensibility in mind and offers good usability to developers
who want to extend the compilation flow.

The PyTorch backend discussed in Chapter 5 provides a high level interface to the compilation
flow. It abstracts away the details of the compilation and loading of the compiled model.
Because the end user only needs to provide a PyTorch model and a sample input tensor for
the compilation to work, the process should be easily integrable into existing projects. Once
the model has been compiled, the ModelInvoker object provides a similar interface to the
original PyTorch model. This allows for simple substitution of the original model with the
compiled model. The use of the compilation and loading functionality only requires minimal
changes to the existing codebase. A major roadblock for the usability of the end user is the
lack of support for quantized models, as discussed in Section 2.4. This is a limitation which
is expected to be resolved by future releases of the Torch-MLIR project. When this is the
case, no additional changes to the rest of the compilation flow should be necessary. The
quantized models will be able to be compiled in the same way as already described. Because

27

6 Usability Analysis and Evaluation

of this, being only a temporary roadblock, the overall usability of the compilation flow for the
user can still be considered high.

6.2 Simulator Architecture

In order to evaluate the performance and energy efficiency of the compiled models, a
simulator implemented. It is designed to be close enough to existing hardware to provide
meaningful results. The simulator is written in C++ with SystemC for the hardware simulation.
An overview of the simulated architecture is shown in Figure 6.2.

DA Ao —— a 5
Ail[b] - o o - -
DAC
U GBl,O 0] GBI,O) »GB1,1[o] DGBl,l[l] b GBl,p))
A—>| MUX DAC >Rl o « % %
_I\ U GBz,o o] GB\MI-IE]\»GB\:IEI)]\DGB\:IE]\’ GB\;IE]\'
GBs,o o] GBa,o i pGBa,1[o] |GBs,1[1] 1 GBS,p i))
DAC UAin[b] « « « « «
GBn,o [0] GBn,o) DGBn,l[O] IGBn,l[l] b GBn,p E5))
ICi,o[b,o] ICi,o[b,l] ICi,l[b,o] ICi,l[b,l] ICi,p[b,l]
iseH]
S&H
C <€ MUX (€= sS&A |e ADC [e [SaH
g IS&H
< [saH]

Figure 6.1: Simulated memristive-crossbar accelerator architecture with mapping of Amxn - Baxp = Cmxp-
Indices ¢ and [b] denote time multiplexing and bit slicing steps respectively. Used value types are assumed to fit
in two bit slices.

Figure 6.1 shows the structure of a typical memristive-crossbar accelerator. In order to
perform matrix multiplications, both input matrices need to be mapped onto the hardware.

In this simulator the left hand side matrix, designated with A in Figure 6.1, is mapped
to the input lines entering the crossbar from the left. As these lines are laid out in one
dimension, only one row of the matrix is mapped to them at a time. This results in a time
multiplexed mapping of the matrix. Additionally, the values in the respective matrix rows need
to be converted to analog voltage levels in order for the computation to be performed by
hardware. This is achieved by a digital to analog converter. Because of hardware complexity
and imperfections in analog circuitry, they cannot directly reproduce the resolution of the
input values. The Digital to Analog Converter (DAC)s in the simulator are modeled to have a
resolution of 2 bits. In extreme hardware configurations, the use of a DAC may be skipped
completely resulting in a one bit resolution. Because of this resolution limit, an additional
time multiplexing step is used where only two bits of the input value are sent at a time. The

28

6 Usability Analysis and Evaluation

two levels of multiplexing just described are represented by the multiplexer block, positioned
before the DACs in Figure 6.1. All effects of multiplexing the left hand side matrix are then
reverted after the Analog to Digital Converter (ADC) conversion by the second multiplexer.
This is achieved by shifting the bits back to their original position and writing the results into
the correct location in the output matrix, designated with C'in Figure 6.1.

The right hand side matrix, B, is mapped to the crossbar array. The simulator models a
crossbar with size 128x128. Because the memristors are arranged in a 2d structure, the
full matrix can be mapped at once. Similarly to the DACs for the left hand side matrix, the
conductances of the memristors in the crossbar are also limited in resolution, because of
differences in the physical material as well as of drifting over time. The memristors in the
simulator are modeled to have a resolution of 2 bits. The bit slicing for the memristors is
achieved spatially, by mapping bit slices to neighboring crossbar columns. Spatial multiplexing
is used in order to keep calculation times to a minimum. The multiplexing is undone by
the shift-accumulate unit after the ADC conversion. On some hardware architectures, it is
possible to disable crossbar columns which remain unused in order to save energy. This is
not modeled in the simulator.

The way the matrices are mapped onto the hardware allows the dot product of the respective
rows and columns, which is the basic operation used during matrix multiplication, to be
computed completely analog. The multiplication is performed according to Ohm's law. With
U being the voltage representing a value from the left hand side matrix and G being the
conductance representing a value from the right hand side, the resultis calculated as I = U-G.
The addition is then performed according to Kirchhoff's current law, as the currents from
all memristors in a column add up to produce the result. The result is then held steady
during ADC conversion by the sample and hold units and converted back to a digital value.
After all effects of multiplexing are undone, this results in a full matrix multiplication being
performed.

—A —B o

. —— -
sender crossbar ’ subtractor receiver

WHADC H S&A ’ ’

MUX DAC —B [—] MUX

crossbar ’
WHADC H S&A ’ ’

Figure 6.2: Simulator architecture

To model the architecture shown in Figure 6.1, the simulator is split into four main
components, which can be seen in Figure 6.2. The first component is the sender. It is
responsible for sequentially sending the bit-sliced rows of the left hand side matrix as
voltages to the two crossbars which are connected. These are needed because the simulator
uses differential encoding for the conductances. When using differential encoding, values
from the right hand side matrix are encoded as the difference between corresponding
conductances in both crossbars. For some memristor technologies this solves the problem
of representing a zero conductance. It also reduces the effects of drift in the memristors, as it

29

6 Usability Analysis and Evaluation

is expected to be similar in both crossbars and therefore cancels out during the subtraction.
Additionally, differential encoding allows the representation of negative values, which is not
currently used in the simulator. Both crossbars compute the dot product according to Ohm's
law and Kirchhoff's current law as discussed above using their respective conductance values.
They also perform the analog to digital conversion as well as the shift-accumulate operations.
The results of the crossbars are then sent to the subtractor component. This component
recombines the two results by subtracting them from each other, thereby decoding the
differential encoding. The final result is then sent to the receiver component. It undoes the
two layers of time multiplexing introduced by the sender and writes the result to the output
matrix.

The simulator is set up to directly receive binary representations of the input matrices.
It can dynamically accept a range of integer widths and matrix sizes, using a fully type
erased representation internally. In order to simplify testing and benchmarking, an additional
wrapper executable was implemented which creates a unix domain socket on the filesystem.
The runtime library discussed in Section 3.7 checks for the existence of this socket and
sends the input matrices to the simulator if it is found. The wrapper then executes the
simulator and sends the result back to the runtime library. The simulator not only returns the
output matrix to the wrapper on its invocation, but also collects and sends back performance
metrics. Based on these metrics, estimates of performance and energy efficiency can be
made.

6.3 Benchmarking

This section will present the results of a limited benchmarking run, aimed at demonstrating
the performance and energy efficiency benefits of memristive-crossbar devices. The
benchmarking was performed on a simulated accelerator described in Section 6.2. Memristor
and driving parameters were chosen to similar values as are found in existing hardware. An
overview of all accelerator parameters is shown in Table 6.1.

Parameter Value

Crossbar size 128x128

DAC resolution 2 bits

Memristor resolution 2 bits

Clock frequency 1 GHz

Memristor range 10 kQ to 40 kQ
Maximum crossbar input voltage | 0.2V

Conductance encoding Differential, parallelized

Table 6.1: Simulated architecture parameters

As performance analysis is not the main topic of this thesis, the benchmark consists of only
a single matrix multiplication. It is sized to completely fill the simulated crossbar and is as
such representative of a typical workload for previously tiled large matrix multiplications.
The specific parameters of the matrix multiplication are shown in Table 6.2.

The runtime of only the computation pipeline, presented in Figure 6.1, was simulated to
be 85 ns. It is comprised of 6 cycles, 1 ns each, which are needed to fill the pipeline and
produce the first 2 bit slice of the result, as well as the following 79 cycles which complete
the computations for the remaining 79 slices. The full computation latency is comprised of
this runtime, together with the transfer latency as well as the write latency generated while

30

6 Usability Analysis and Evaluation

Parameter Value

Lhs matrix size | 10x128

Rhs matrix size | 128x16

Integer width 16 bit

Value range uniform random, full 16 bit range
Table 6.2: Benchmark parameters

setting up the memristor conductances. With the completely filled crossbars in this example,
a total of 32768 memristor writes have to be performed. Values for the additional latencies
are highly dependent on the hardware architecture and the memristor technology being
used and are not provided here.

Estimation of energy consumption is equally dependent on the specific hardware architecture
and memristor technology. With the assumed values for the memristor range and input
voltage, the simulator estimates the energy consumption of purely the crossbar during the
full computation to be about 1750 pJ. Additionally, the energy consumption of the DACs,
ADCs, digital logic and memristor writes have to be taken into account. A paper presenting
the OCC compiler [Sie+22] provides some estimates for the energy consumption of these
components in Table Il from Chapter V. Please note that the experimental setup used in the
paper is different from the one used here and that shown values might not scale linearly
with the crossbar size.

As a comparison, the same matrix multiplication was performed on a CPU with a single
threaded loop based matrix multiplication implementation written in C++. The benchmarking
environment is described in Table 6.3.

Parameter Value

CPU Intel(R) Core(TM) i7-8550U

4 cores, 8 threads

1.8 GHz base clock, 4.0 GHz boost clock

Compilation setup | Clang 19.1.1 with -O3 optimization flag
Table 6.3: CPU setup

The computation was performed using a warm cache and averaged a runtime of 16.24 us.
This shows the large performance benefits of memristive-crossbar devices over traditional
computing architectures. The energy consumption of the CPU was not measured, as this
would require extensive instrumentation. However, it can be assumed to be significantly
higher than the energy consumption of the accelerator.

31

7 Epilogue

7.1 Conclusion

This thesis presented an end-to-end compilation flow for memristive-crossbar accelerators.
To make the process more accessible a Python package was developed, which provides
a high-level interface to the compilation flow. The package allows for easy compilation,
loading, and running of inference on compiled PyTorch models. The compilation flow was
evaluated based on its usability and performance. The results show, that the compilation flow
is highly modular and extensible. The PyTorch backend provides a high-level interface to the
compilation flow, making it easy to integrate into existing projects. Additionally, a simulator of
a existing memristive-crossbar accelerator architecture was developed to provide validation
of correctness as well as evaluation of performance and energy efficiency.

7.2 Outlook

The Cinnamon compiler already supports code generation for CNM devices. Because of
this, the presented compilation flow can be extended to support CNM devices as well.
Future additions might also include support for CAM devices, which opens up a large set of
offloading possibilities.

The PyTorch frontend is currently the only frontend supported by the compilation flow.
Additional frontends supporting machine learning frameworks like ONNX and TensorFlow
would further increase the usability and accessibility of the compilation flow. Import of some
ONNX and TensorFlow models is already possible through conversions built into PyTorch
and Torch-MLIR as well as other third-party tools.

Furthermore, the implementation of optimization passes in the various dialects of the
Cinnamon compiler would be beneficial. Some optimization opportunities, like loop unrolling
and compute block fusion, were already mentioned in this thesis. A range of other
optimization passes are certainly possible and could improve the performance, especially of
large compiled models.

Currently, the main roadblock for the compilation flow is the lack of support for automatically
quantized models in Torch-MLIR. This limitation will most likely be resolved in the near future,
as the support has already steadily improved during the writing of this thesis.

32

Acknowledgements

| would like to express my sincere gratitude to my main supervisor, Dr.-Ing. Asif Ali Khan, for
his guidance and support throughout the duration of my thesis. His expertise and insightful
feedback have been invaluable in shaping the direction and quality of this work. | am also
deeply thankful to Clément Fournier and Hamid Farzaneh for their continuous assistance
and willingness to discuss various aspects of the project. Their contributions have been
crucial to the successful completion of this thesis.

| extend my heartfelt thanks to Prof. Dr.-Ing. Jeronimo Castrillon and Prof. Dr.-Ing. Diana
Gohringer for kindly agreeing to serve as the referees for my thesis.

Thank you all for your contributions and support.

33

Bibliography

[He+20]

[ia+21]

[Lat+21]

[Qu+21]

[Yu+21]

[Sie+22]

[Diw+23]

[FSR24]

[Kum+24]

Wangxin He et al. “2-Bit-Per-Cell RRAM-Based In-Memory Computing for Area-
/Energy-Efficient Deep Learning”. In: IEEE Solid-State Circuits Letters 3 (2020),
pp. 194-197. DOI: 10.1109/LSSC.2020.3010795.

Yanhai Jiang et al. “"HARNS: High-level Architectural Model of RRAM based
Computing-in-memory NPU". In: 2021 IEEE International Conference on Integrated
Circuits, Technologies and Applications (ICTA). 2021, pp. 35-36. DOI: 10.1109/
ICTA53157.2021.9661827.

Chris Lattner et al. “"MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation”. In: 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). 2021, pp. 2-14. DOI: 10.1109/CG0O51591.2021.9370308.

Songyun Qu et al. "ASBP: Automatic Structured Bit-Pruning for RRAM-based NN
Accelerator”. In: 2021 58th ACM/IEEE Design Automation Conference (DAC). 2021,
pp. 745-750. DOI: 10.1109/DAC18074.2021.9586105.

Shimeng Yu et al. "RRAM for Compute-in-Memory: From Inference to Training”. In:
IEEE Transactions on Circuits and Systems I: Regular Papers 68.7 (2021), pp. 2753~
2765. DOI: 10.1109/TCSI.2021.3072200.

Adam Siemieniuk et al. "OCC: An Automated End-to-End Machine Learning Opti-
mizing Compiler for Computing-In-Memory". In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 41.6 (2022), pp. 1674-1686. DOI:
10.1109/TCAD.2021.3101464.

Sumit Diware et al. “Accurate and Energy-Efficient Bit-Slicing for RRAM-Based
Neural Networks”. In: /[EEE Transactions on Emerging Topics in Computational
Intelligence 7.1 (2023), pp. 164-177. DOI: 10.1109/TETCI.2022.3191397.

M. Fritscher, S. Singh, and T. et al. Rizzi. “A flexible and fast digital twin for RRAM
systems applied for training resilient neural networks”. In: Scientific Reports 14
(2024), p. 23695. DOI: 10.1038/s41598-024-73439-z. URL: https://doi.org/10.
1038/541598-024-73439-7.

Ashwani Kumar et al. “Energy Efficient Implementation of MVM Operations Using
Filament-Free Bulk RRAM Array”. In: 2024 Neuro Inspired Computational Elements
Conference (NICE). 2024, pp. 1-5. DOI: 10.1109/NICE61972.2024.10549369.

34

https://doi.org/10.1109/LSSC.2020.3010795
https://doi.org/10.1109/ICTA53157.2021.9661827
https://doi.org/10.1109/ICTA53157.2021.9661827
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/DAC18074.2021.9586105
https://doi.org/10.1109/TCSI.2021.3072200
https://doi.org/10.1109/TCAD.2021.3101464
https://doi.org/10.1109/TETCI.2022.3191397
https://doi.org/10.1038/s41598-024-73439-z
https://doi.org/10.1038/s41598-024-73439-z
https://doi.org/10.1038/s41598-024-73439-z
https://doi.org/10.1109/NICE61972.2024.10549369

[Kha+25]

Bibliography

Asif Ali Khan et al. “CINM (Cinnamon): A Compilation Infrastructure for Het-
erogeneous Compute In-Memory and Compute Near-Memory Paradigms”. In:
Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS25). ASPLOS '25. Rotter-
dam, The Netherlands: Association for Computing Machinery, Mar. 2025.

35

	Title page
	Abstract
	Zusammenfassung
	Acronyms
	Contents
	Introduction
	Motivation and Goals
	Design Paradigms
	Compilation Flow Overview

	Frontend
	Converting PyTorch Models to Torchscript
	Converting Torchscript to the Torch Dialect
	Additional Conversions in Torch-MLIR
	Working with Quantized Models

	Cinnamon
	Conversion from Torch to Cinm Dialect
	Tiling
	Conversion from Cinm to Cim Dialect
	Scheduling of Cim Dialect Operations
	Conversion from Cim to Memristor Dialect
	Conversion from Memristor to Func Dialect
	Memristor Runtime Library

	Backend
	Lowering to LLVM IR
	Code Generation

	PyTorch Backend
	Compiling PyTorch Models
	Loading of Compiled PyTorch Models
	Forwarding Calls to the Compiled Model
	Running Inference on Compiled PyTorch Models

	Usability Analysis and Evaluation
	Usability Analysis
	Simulator Architecture
	Benchmarking

	Epilogue
	Conclusion
	Outlook

