Interferences within a certifiable design methodology for
high-performance multi-core platforms

Mohamed Amine KHELASSI', Felix SUCHERT?, Abderaouf AMALOU?, Benjamin LESAGE*, Anika CHRISTMANN?,
Robin HAPKA?, Jeronimo CASTRILLON?, Mihail ASAVOAE', Mathieu JAN', Claire PAGETTI*, Selma SAIDI

U Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2 Nantes Université, Ecole Centrale Nantes, LS2N, CNRS UMR 6004, F-44000 Nantes, France
3 Technische Universitiit Dresden, Dresden, Germany
4 ONERA, Toulouse, France

3 Technische Universitit Braunschweig, Germany

ABSTRACT These platforms offer the computational capabilities required

for modern workloads but make it difficult to meet strict tim-

The adoption of high-performance multi-core platforms in avion- ing and safety requirements imposed by standards like ISO
ics and automotive systems introduces significant challenges 26262 and DO-178C [15} 19}, 28]. A key source of difficulty

in ensuring predictable execution, primarily due to shared re- lies in the complex and often unpredictable interactions be-
source interferences. Many existing approaches study inter- tween concurrent applications (or tasks within an application)
ference from a single angle—for example, through hardware- competing for shared hardware resources. These interactions
level analysis or by monitoring software execution. However, lead to hardly predictable delays, that are called interferences.

no single abstraction level is sufficient on its own. Hardware
behavior, program structure, and system configuration all in-
teract, and a complete view is needed to understand where in-
terferences come from and how to reduce them. In this paper,
we present a methodology that brings together several tools
that operate at different abstraction levels. At the lowest level,
PHYLOG provides a formal model of the hardware and iden-
tifies possible interference channels using micro-architectural

Understanding and controlling inter-core interferences is crit-
ical to ensure predictable system behavior. However, such in-
terferences are difficult to model, analyze, and mitigate due
to their dependency on hardware architecture, executive layer
(e.g. operating system or hypervisor) and execution patterns.
Without a structured methodology, this unpredictability com-
plicates certification efforts and increases system design costs.

transactions. At the program level, machine learning analy- There has been extensive research to identify and analyze in-
sis locates the exact parts of the code that are most sensi- terferences. However, each approach focuses on individual as-
tive to shared-resource contention. At the compilation level, pects such as timing anomaly analysis or micro-architectural
MLIR-based transformations use this information to reshape interference identification. By micro-architectural, we mean
memory access patterns and reduce pressure on shared re- abstracting the application and executive layer as a set of micro-

sources. Finally, at the system level, Linux cgroups enforce transactions (e.g. core reading a data in a DDR bank). Such
static execution constraints to prevent highly interfering tasks methods, although valuable, do not provide the comprehensive
from running together. The goal of our approach is to reduce view required to accurately model and mitigate interference

memory interference and improve the system’s predictability, across the complex interactions between software execution
thereby easing the certification process of multi-core systems and hardware behavior. Therefore, there exists a clear demand
in safety-critical domains. for an integrated methodology that bridges hardware and soft-

ware analyses, enabling more accurate interference modeling

Keywords Memory interferences, MLIR framework, Machine o
and mitigation.

learning, Linux cgroups
In this paper, we propose a combined hardware/software method-
1. INTRODUCTION ology for modeling, analyzing, and reducing interferences on
multi-core systems. Our approach integrates several layers
(see Figure[I)). We identify micro-architectural interferences
with PHYLOG approach, that relies on a platform model and
targeted micro-benchmarks. We use machine learning to find
Mo A Khelassi ot al. This i e distibuted code regions sensitive to those interferences and annotate the
e i Kbl T b s il bl applicaion code accordingly. Thanks o tis informtion, MLIR

mits unrestricted use, distribution, and reproduction in any medium, provided compiler optimizations are applied in order to reshape mem-
the original author and source are credited.

The increasing integration of high-performance multi-core plat-
forms in safety-critical domains such as avionics and auto-
motive systems presents both opportunities and challenges.

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 1

Interferences within a certifiable design methodology for high-performance multi-core platforms

ory access to reduce contention and we configure Linux cgroups
to control how resources are shared between tasks.

The remainder of this paper is structured as follows. The next
Section [2] details our methodology. Section [M] presents our
potential use cases. Finally, the conclusion [6] outlines the di-
rections for future research.

Application
(Source code - with annotations)

v

Compilation
(MLIR -- minimize the interferences)

Interference analyses
(PHYLOG, Machine learning)

A

¢ A

Executive layer Linux
(Cgroup allocation to minimize interferenes)

v

Binary programs Hardware platform

Figure 1. Overview of the interference-aware design method-
ology.

2. METHODOLOGY

We aim to present an end-to-end methodology for detecting,
quantifying, and reducing memory interference in multicore
systems. To address memory interference in a practical way,
we propose a flow that combines analysis, transformation, and
runtime mitigation. The intuition is to integrate compile-time
and runtime strategies guided by PHYLOG and machine learn-
ing analysis to both understand and control timing variability.
To address the challenge, our methodology uses three comple-
mentary techniques: (1) interference analysis using the PHY-
LOG framework and machine learning, (2) compilation-level
optimizations based on MLIR, and (3) static resource alloca-
tion using Linux cgroups.

2.1. Micro-architectural Modeling

The PHYLOG [/] methodology was designed to assist appli-
cants in certifying their multi-core processors in the aeronauti-
cal domain. A platform description, in the PHYLOG modeling
language (PML), captures the knowledge about the character-
istics of the platform based on the available documents and
the applicant’s assessments. It also captures the target config-
uration, including hardware and software settings such as the
mapping of applications hosted on the platform to cores.

The PML model serves as the backbone for the identification
of interference channels through interference calculus. Inter-
ference channels, as per AMC20-193 [14]], are hardware re-
sources whose use by an application might cause variations in
its functional or temporal behaviour over its behaviour in iso-
lation. Interference calculus thus provides transactions com-
binations expected to be free from (or to be suffering from)
interference. Each transaction captures a path an application
may exercise through hardware resources.

The interfering or interference-free combinations then support

the validation of the model, understanding latent interference
sources, and the quantification of said interference where ap-
plicable. This is achieved through micro-benchmarks each
exercising individual transactions. Combinations of micro-
benchmarks [1, [12], matching the combinations of interest
identified through interference calculus, should confirm the
verdict of the analysis. Otherwise, refinements to the model
are required.

The application and executive layer are abstracted as a set of
micro-architectural transactions. The identified interferences
are also expressed as microarchitectural interferences. Link-
ing this knowledge to application code and behaviour is far
from simple. This is the reason why it is then combined with
a complementary analysis explained below.

2.2. Interference Modeling using Machine Learning

We build on the microbenchmarking approach proposed by
Courtaud et al [12] to analyze how multi-core memory inter-
ferences affect code execution performance. Specifically, we
gather some metrics from the Performance Monitoring Unit
(PMU) and combine it with observed contention metrics (de-
fined as the ratio between the execution time under contention
and in isolation) we formulate an inverse machine learning
problem [4]]. Our goal is to identify precisely which segments
of the code are most vulnerable to performance degradation
when competing for shared resources such as L2 caches, mem-
ory buses, and DRAM utilization. This approach offers a new
way to pinpoint the code regions most sensitive to resource
contention and create what we will call a code heatmap arte-
fact that can be used as cost function for MLIR optimization
pass and as input data for the cgroup allocation heuristic.

2.3. Interference reduction via compilation

This part of the methodology focuses on reducing interfer-
ence through compile-time and run-time techniques applied
to parallel dataflow applications. Traditional compiler opti-
mizations improve cache locality for single-threaded code, but
they do not address the interference caused by parallel execu-
tion, especially when many dataflow nodes compete for a lim-
ited number of hardware threads. This leads to frequent task
switching and extra cache misses.

To handle this, we first analyze the dataflow graph of the appli-
cation and fuse compatible nodes to reduce the overall number
of parallel tasks. This is done using an MLIR-based compila-
tion flow (Etna), which transforms the application into a ded-
icated dataflow IR and applies fusion when nodes operate at
the same rate and communicate unconditionally. Fewer tasks
mean less oversubscription, fewer context switches, and lower
memory interference.

Atruntime, we complement this with the HARP resource man-
ager, which monitors performance metrics and adjusts thread
allocation. By prioritizing nodes that suffer more cache misses,
HARP helps limit interference during execution without re-
quiring changes to user code.

Together, these compile-time graph transformations and run-
time resource adjustments reduce memory contention in par-
allel applications and improve execution predictability.

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 2

Interferences within a certifiable design methodology for high-performance multi-core platforms

2.4. Interference reduction via cgroups

Cgroups provide a way to partition hardware resources in Linux,
making it possible to restrict how tasks share CPU cores, mem-
ory, and other components. In our methodology, cgroups are
used at runtime to prevent tasks that strongly interfere with
each other from running at the same time.

We rely on an interference matrix, built from PHYLOG anal-
ysis and machine learning results, which quantifies how much
slowdown each pair of tasks causes when they run together.
Based on this matrix, we build a static cgroup hierarchy in
which tasks that show high mutual interference are separated
into different cgroups and controlled using the freezer subsys-
tem, ensuring they do not execute concurrently. Tasks that do
not interfere significantly can be grouped together.

This static cgroup configuration helps enforce predictable be-
haviour by isolating interfering tasks at the operating-system
level, complementing the compile-time and program-level op-
timizations used in other parts of the methodology.

3. HOW THINGS INTERACT

Our methodology integrates distinct yet complementary layers
to reduce memory interference in interference-aware design
flow.

* PHYLOG performs a platform-level analysis based on a
formal model of the hardware and software configuration.
It identifies potential interference channels using micro-
architectural transactions and interference calculus.

* Machine learning analysis processes data from targeted
microbenchmarks and performance counters. It pinpoints
which code segments are most sensitive to interference,
producing a code heatmap that characterizes application-
level interference behaviour.

e MLIR-based transformations use this heatmap as a cost
model to reshape memory access behaviour

* The cgroup configuration heuristic takes as input both the
PHYLOG interference channels and the machine learning-
based heatmap. It uses this joint interference characteri-
zation to assign tasks to cgroups and tune resource limits.

4. USE-CASES & EVALUATION

In our evaluation, we focus exclusively on the Raspberry Pi 4
platform, which features four Cortex—A72 cores with private
32 KB L1 data caches and a shared 1 MB L2 cache. The sys-
tem runs Raspbian, providing a lightweight environment suit-
able for rapid instrumentation. As the test workload, we use
a parameterized matrix multiplication kernel, where the sizes
N, M, and K control the dimensions of matrices A and B.
This setup allows us to study how variations in memory-access
patterns affect interference sensitivity and prediction accuracy.

fdefine N 256
#fdefine K 4096
#define M 9

int main() {
int A[N] [K];
int B[K] [M];

Initialize_Matrix_Random(N, K, A, 1, 10);

1e6 L2 accesses vs matrix dimension

—— varying K
—m— varying N

471 = varying M

L2 data accesses (LD2)

1500 2000 2500 3000 3500 4000

Matrix dimension (same grid as K)

0 500 1000

Figure 2. Sensitivity of L2 Accesses to Variations in Matrix
Dimensions (M, N and K) starting from 64 with a step of 128,
the other dimensions are fixed into 32.

Initialize_Matrix_Random(K, M, B, 1,
int C[N] [M];

MM (A, B,C);

return 0;

10);

To study the sensitivity to interferences we measured the num-
ber of L2-cache accesses by fixing one of the parameters M,
N, or K to 32 while varying the remaining parameter. The
varying parameter started at 64 and increased with a step of
128 until it exceeded 4096. The resulting curve, shown in the
figure, indicates that matrix multiplications with a large value
of K—corresponding to irregular matrix shapes—produce sig-
nificantly more L2-cache accesses. Although such large K
values may appear unusual, they are common in modern in-
ference workloads, particularly in Transformer-based models
and LLMs, where many matrix operations involve highly non-
square shapes (with K much larger than M and N). More-
over, a higher number of L2 accesses is advantageous for study-
ing interference effects.

4.1. Micro-architectural Modeling

To support the identification of potential interference channels
on the target Raspberry Pi 4 platform, we built a model of the
board. Figure |3| presents an overview of the identified hard-
ware resources. Hardware resources have been classified (and
color-coded) following the PML nomenclature into Initiators,
Transporters, or Targets for transactions. The model was built
through a first review of the available documentation on the
board [27]], the embedded Broadcom BCM2711 System-on-
Chip (SoC) [26]], and its ARM A72 processor [25].

The Raspberry Pi 4 board comprises a Broadcom BCM2711
SoC, configurable LPDDR4 SDRAM, and a number of sup-
porting interfaces such as USB, GPIO, HDM]I, etc. Our efforts
focused on capturing the resources relevant to considered ap-
plicative use case; the model only captures interfaces and pe-
ripherals at the board- and SoC-level with a high granularity.
We consider a conservative model, exemplified by the inte-
grated VideoCore GPU (iGPU), where each such device is a
composite with a single target and a single initiator, sharing a

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 3

Interferences within a certifiable design methodology for high-performance multi-core platforms

common port. This choice is further reinforced by the lack of
documentation regarding those devices. Revisions will be re-
quired under a different use case, or if these peripherals indeed
affect the considered applications.

The ARM Cortex-A72 Cluster on the BCM2711 does feature
4 cores, each with its own Level 1 (L1) caches for instruction
(ICache), data (DCache), and page descriptors (TLBs). The
L2 memory subsystem is shared between the cores, featuring
a unified L2 Cache, a Snoop Control Unit for memory co-
herency, and the L2 prefetcher. Note that while there are two
levels of TLB per core, we elect to conservatively model them
as a single target. The TLBs act as single entry block; the only
path to the L2 is through the L1, and the only path from the
L1 goes through the L2 [23].

The interference analysis, without any additional mitigation
from the hardware or software configurations, highlights the
shared resources as sources of interference: the L2 subsystem,
the AMBA Bus, and the LPDDR. The analysis also flags pri-
vate caches as a source of interference. The L1 and L2 caches
are inclusive, such that a line in the L1 must also be present
in the L2. An eviction from the L2 may thus result in the
same line being evicted from the L1. Without any additional
restrictions, a private L1 may thus be impacted by other cores,
or the L2 prefetch. Similarly memory coherency, enforced by
the snoop, may result in the invalidation of data in the L1 and
L2 caches due to requests from other cores, or from devices
through the coherence ACE and AXI ports.

4.2, Interference Modeling using Machine Learning

We build on the microbenchmarking method of Courtaud et
al. [12] to quantify how shared-memory pressure affects ex-
ecution time. Our approach combines timing measurements,
PMU events, and a dynamic extraction of the instruction trace.
The goal is to identify the regions of code that suffer the high-
est slowdowns when sharing L2, buses, or DRAM. The final
output is a code weights vector usable as a cost function for
MLIR optimizations and as input to cgroup allocation poli-
cies.

4.2.1. Phase 1: Collecting Interference Timing

Instrumentation and execution setup. We reuse the mi-
crobenchmarks of Courtaud et al. [[12] as training and valida-
tion victims. Each benchmark is executed twice: (i) isolation
and (ii) concurrently with aggressors. Aggressors are hand-
written stressors targeting specific microarchitectural compo-
nents: one precisely loads on a specified LLC bank continu-
ously (inspired from [5]]); another saturates both the memory
bus and DRAM. Each aggressor runs on a dedicated core in
an infinite loop. We monitor their activity (aggressiveness) us-
ing hardware event counters (how much LLC misses we have,
how much data are passing through the bus). Timing mea-
surement. Each victim contains explicit observation points
inserted (by hand) before and after loop nests or simple loops.
At each point, we record the execution time in isolation and
under interference. We repeat every run 100 times in both con-
ditions. Ground truth (delta). For each observation point, we

compute the slowdown:

A — Tinterference
Tisolation

This ratio is the ground truth used to train our learning model.

4.2.2. Phase 2: Collecting Instruction and Data Adresses
About the Victim

Assembly trace extraction. This phase is independent of tim-
ing measurements. Using gdb, we extract the full instruction
trace of the victim (we represent a program by an execution
trace): instruction address, instruction type, and the corre-
sponding data address when applicable. Trace transforma-
tion. The trace is converted into a structured sequence:

(InstrAddr, InstrType, DataAddr).

This heavy parsing step is performed only once per program.

The combined dataset (timing deltas + instruction-level fea-
tures) forms the input to our machine-learning model. In ad-
dition to extracting the instruction trace, we also use the col-
lected data addresses to determine which LLC bank the victim
accesses most. The bank is inferred from the physical-address
bits associated with the LL.C slices. The dominant bank is then
targeted by an aggressor configured to saturate the same cache
region.

4.2.3. Phase 3: Training

We train a BERT-style Transformer model. The encoder is
pretrained on assembly code to learn structural and semantic

patterns, following the same pretraining philosophy as CAWET [2].

We fine-tune it with pairs (execution trace, A) using an RMLSE
loss, which penalizes underestimation more than overestima-
tion.

During fine-tuning, we observe poor generalization when the
model relies only on the delta-regression objective (42% accu-
racy). To investigate this behaviour, we extract the last atten-
tion matrix of the Transformer for each inference. This matrix
has size NV x N, where N is the length of the trace. Most of the
attention mass concentrates on instruction types that are not
LOAD or STORE, nor on addresses. To align the model with
actual memory behaviour, we replace timing by the number of
L2 accesses. For each victim, we build an L2 _Access_MAP,
a vector counting the number of L2 accesses (using perfor-
mance event) per region (these regions follow the observation-
point boundaries). We also reduce the attention matrix into a
vector by summing all elements of each row, then aggregating
these values into the same regions, yielding Attent ion_MAP.

Both vectors are normalized so that every element lies in [0, 1]:
L2_Access_MAP is scaled by the total number of L2 accesses,
and Attention_MAP by its maximum value. Their dot prod-
uct produces a correlation score bounded by the number of
observation points Nops. This score is added to the loss as an
extra term, encouraging the model to align its attention with
actual L2-access behaviour while predicting deltas.

Let

C' = dot(Attention_-MAP, L2_Access_MAP).

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 4

Interferences within a certifiable design methodology for high-performance multi-core platforms

, " RespheryPi4ModelBBoard
SR BroadcomBCMz7tiSoC | UOinterfaces |
o N L2Memory Subsystem | i 0
[Composite | L SN
rrrrrrrrrrrrr ! ETH

I ik Prefetcher NS

]| b Preftcher |

2 | | 1| tzcahe | | | snoopumt | Wi

&1 A2COre(xd) i | P R

B $ BEREEN-T

LX) i H . I

L2 [L2 Buffers | |

8 i ! SD

35: 77777777777777777

e

I<: | CAM

NN L1 Arbitration L2 Arbitration| ¢ @ fIoIooooooiooiiis

AMBA Bus

7S N " DMA

NN

@ SPI(x2) | UART

- T B

[m

3

<

Figure 3. Overview of the PML model for the Raspberry Pi 4 Board

A perfect alignment yields C' = Ngbs. We convert this into a
penalty by taking the distance from the ideal value:

Penalty = Ngps — C.

The final loss is:

L = RMLSE(Apred; Ags) + A - (Nops — C),
With RMLSE formula:

n

% Z (log(1 4 g;) — log(1 + y%))2

i=1

RMLSE(y,9) =

where A controls the influence of this correlation-based term.
In this paper we fix A to 0.5. With this new loss we get a higher
accuracy of 72% (compared to 42% we using just RMLSE).

4.2.4. Results

Attention Matrix: With and Without the Correlation-Based
Loss. Figure [4] shows a subpart of the transformer’s final-
layer attention matrix when trained (i) without the correlation-
based penalty and (ii) with the proposed loss term. Without the
penalty, the model concentrates most attention on instruction
types, exhibiting little sensitivity to memory behaviour. With
the penalty, attention shifts toward instruction regions that cor-
respond to heavy L2 activity, indicating that the model better
captures the actual sources of interference.

Accuracy Under Varying K. To assess how the model gen-
eralizes, we experiments on matrix multiplication, we vary the
parameter K in the matrix multiplication kernel while keeping

N and M fixed. Increasing K changes the stride and reuse dis-
tance of the matrix B, directly affecting the L2 pressure and
interference sensitivity.

Figure [3] reports the accuracy of the prediction for different
values of K. We measure the ratio (Delta) when running un-
der maximum interferences and when running the matrix mul-
tiplication without running our aggressors. We also give the
average of the ratio estimated by our Transformer model. The
results show that for matrix multiplication under variation of
K, our estimations never underestimate the delta while keep-
ing a reasonable distance from the measurements. This will
help us to use the machine learning model during compilation
as a cost function to indicate the sensitivity of the program to
interferences.

At this stage, our approach operates exclusively on binary
code, which limits its applicability to MLIR-based workflows.
A key direction for future work is to extend the front-end to
MLIR and its relevant dialects, and to train the Transformer
directly on this intermediate representation so that interference
patterns can be learned and mapped at the MLIR level rather
than from low-level assembly.

4.3. Interference reduction via compilation

An application running on a multi-core system may suffer
from interference, primarily due to memory access contention
with shared hardware resources. A substantial amount of the
memory interference potential within an application is deter-
mined at compile time. Compile-time transformations to re-
duce cache misses and exploit data locality are good ways to
reduce memory interference within a single-threaded applica-
tion. However, they fall short in the context of applications
that exploit parallelism and have an inherent dataflow graph.

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 5

Interferences within a certifiable design methodology for high-performance multi-core platforms

Subpart of attention matrix- without using the proposed loss

z
°
®

Figure 4. Final-layer attention matrices without (top) and with
(bottom) the correlation loss.

As part of our methodology, we aim to close this gap by pro-
viding means to reduce the interference within a parallel ap-
plication on a dataflow graph level, using a combined compile
time and run time approach.

4.3.1. Interference Model

In parallel dataflow applications, task switching acts as an ad-
ditional source of memory interference not caught by classic
single-thread focused optimizations.

Dividing an application into several threads executing in par-
allel often leads to an over-saturation of the underlying hard-
ware threads with work. The result is task switching, which
incurs a significant memory interference overhead, as the data
gets loaded in and out of cache every time a switch occurs.
However, since in a normal execution environment, the oper-
ating system scheduler allocates resources, task switching it-
self is unpredictable and adapting your application to the con-
stantly changing available resources would require significant
changes to user code.

Applications modeling a dataflow graph tend to be especially
affected by the over-saturation problem. Even simple compu-
tational graphs often have more nodes than the target hardware
has threads. However, these graphs offer the advantage of con-
sisting of compartmentalized, separate tasks that communicate
via a well-defined interface. Yet, not all nodes in a graph have
the same complexity and worst-case execution time. Thus,

—e— Ratio measured
—— Ratio predicted

A T

1.08 -

1.04

1.02

1.00 -

0 500 1000 1500 2000
K

Ratio: execution time during interf. execution time w.o. interf.

Figure 5. Prediction accuracy when varying parameter K in
the matrix multiplication kernel.

Runtime

Source

Compile-Time

Implemen- Object
tation T B files

)

Application | *
IComposition|__: composition dfg - Parallel
: dialect dialect B Runtime

Stateful Operator
Transformations Fusion

HARP
Manager

Figure 6. Overview of the compilation flow.

fusing neighboring nodes of the graph can be a means to re-
duce memory interference by reducing the over-saturation of
threads and eliminate overhead.

To address this problem, we propose a set of compile-time op-
timizations (subsubsection 4.3.2)) to alleviate the over-saturation
problem. A run-time resource manager (subsubsection 4.3.3)
complementary to our cgroups method allows
the application to intelligently adjust at runtime to changes in
the available resources. Our system is shown in |l

4.3.2. Compile-Time Optimizations

The core of our dataflow compilation flow is built atop Etna [31]],
a compiler toolchain based on MLIR [20]. It ingests the de-
scription of an application as a sequential composition of func-
tions and derives a dataflow graph from it [32]]. For this graph,

a deterministically parallel runtime is generated, exploiting
both pipeline and data parallelism.

Our compiler frontend processes an application composition
expressed in a high-level syntax modeled after the program-
ming language C. It is used to compose the high-level algo-
rithm of the application from functions implemented in other
source files of the code base. Besides function definition, dec-
laration and calls, the syntax supports C-style loops and re-

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 6

Interferences within a certifiable design methodology for high-performance multi-core platforms

cursion.The composition MLIR dialect models this rep-
resentation on an IR level. It is used to understand the par-
allelism opportunities within an application by also modeling
the mutability of data. With this information, we can apply IR
transformations that allow the exploitation of data parallelism
throughout the application where possible.

This representation is translated into the dfg dialct, which
models the graph using dedicated IR constructs for dataflow
nodes and edges [31} |6]. The underlying idea of this model
is, that every single node will be mapped to an OpenMP [13]
task. As a result of that, the fusion of nodes at a dfg level will
immediately lead to a reduction of task pressure. Since the di-
alect offers a clean definition of the nodes and their commu-
nication patterns, two nodes can be fused in a safe and side-
effect free fashion. Two nodes are eligible for fusion if they
are executing at the same rat and connected via a dataflow
edge that is triggered unconditionally. We use the model pre-

sented in |[subsection 4.2fto identify nodes suitable for fusion.

At the end of the compilation process, we lower our dfg rep-
resentation into the 1 1vm dialect and link the generated object
file against the other object files produced from the remaining
code of the developer. Using our compilation flow, we gen-
erate a deterministic parallel runtime, optimized for providing
better performance[32], while also reducing memory interfer-
ence.

4.3.3. Run-Time Management

In order to mitigate the memory interference caused by task
switching at runtime, as well as the constantly changing avail-
ability of hardware resources, a method to influence the re-
source assignment within the application is necessary. De-
pending on the available resources, nodes with higher demand
(driven by computation time and cache usage) should be pri-
oritized.

For this, we leverage HARP [30], a Linux-integrated resource
management approach. It provides a unified resource alloca-
tion interface and jointly manages all application threads for
an efficient resource utilization. Its support for the OpenMP
programming model means that we can leverage it without
needing to change any user code. Originally, this work was
geared towards heterogeneous processors and improving en-
ergy efficiency. It analyzes on-line performance metrics of
an application to adjust resource allocation decisions at run-
time. For this work, we introduce the metric of cache misses
into the decision making process of resource assignment. The
more cache misses a thread shows due to task switching, the
higher its priority in the resource assignment to avoid costly
interference.

This runtime system is complementary to our cgroups approach,
as it works exclusively on an application-thread level, rather
than across processes. It can adapt the application as a whole
to the number of available threads and prioritize individual
nodes with high interference potential.

Tn KPN networks, this would be labelled as a 1:1 connection.

4.4. Interference reduction via Cgroups

Linux control groups (cgroups) are a kernel feature that en-
ables hierarchical partitioning of system resources, such as
CPU, memory, and I/O, among groups of processes or tasks.
They provide isolation and limit enforcement, making them
suitable for mitigating interferences in multi-core environments

by controlling resource allocation and task execution behaviour [[16].

In our methodology, cgroups serve as a runtime mechanism
to complement compile-time optimizations (e.g., via MLIR),
enforcing hardware-level constraints to reduce memory con-
tention in safety-critical systems. The context for this cgroup-
based mitigation is the broader interference-aware design flow
(Figure 1), where micro-architectural interferences identified
by PHYLOG and machine learning (Sections 2.1 and 2.2) in-
form code transformations and resource configurations. Un-
like prior applications of cgroups that focus on temporal iso-
lation [10} 3] or frequency scaling [17]], our approach targets
memory interferences by statically configuring cgroups to pre-
vent concurrent execution of contending tasks, enhancing pre-
dictability for certification under standards like DO-178C.

4.4.1. System Model and Assumptions

We model the system as a set of tasks 7 = {7y, 72,..., 7}
deployed on a multi-core platform, where each 7; is provided
as a binary executable. Interferences are captured in a sym-
metric matrix / € R"*", where entry I;; quantifies the degra-
dation factor (e.g., slowdown in execution time or increase in
cache-miss rate) when 7; and 7; run concurrently. A value
I;; > 1 indicates contention, with higher values signifying
greater sensitivity (e.g., [;; = 2.5 implies a 2.5 x slowdown).

Assumptions include:

* Availability of the interference matrix I, derived from up-
stream analyses (e.g., PHYLOG micro-benchmarks and
machine learning heatmaps). In this work, we treat I;;
as a scalar representing the worst-case degradation across
the entire execution. This assumption can be refined in
future work by replacing each I;; with a vector I;; =

[Ii(jl), . ,Ii(;.c)}, where each component captures the in-
terference between specific code regions of 7; and 7;, en-

abling finer-grained mitigation strategies

e Support for cgroup v2 controllers: cpu (for scheduling
weights and shares), cpuset (for CPU affinity and core
pinning) and freezer (for pausing task execution)

e Static deployment: Configurations are determined pre-
runtime

The goal is to generate a cgroup hierarchy that minimizes ag-
gregate degradation by isolating high-interference pairs, thereby
controlling task concurrency.

4.4.2. Heuristic for Cgroup Deployment

We employ a static heuristic to transform [into a cgroup de-
ployment plan. The algorithm identifies contention-sensitive
pairs or clusters (where I;; > 6, with 0 a user-defined thresh-
old, e.g., 1.5) and assigns them to separate sub-cgroups under
a root cgroup. This enables serialization via the freezer
controller, while global limits at the root enforce overall con-
straints.

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 7

Interferences within a certifiable design methodology for high-performance multi-core platforms

The pseudocode of the heuristic is as follows:

Algorithm 1 Static Cgroup Hierarchy Construction

Require: Taskset 7 = {7,..
threshold 6 > 1
Ensure: No pair with I;; > 6 can run concurrently
1: All tasks initially reside in the root cgroup (default kernel
behaviour)
2: for each unique task pair {7;,7;} with ¢ < j and I;; > 6
do
3: Create sub-cgroup C; (if not already existing) and
move 7; into C}
4: Create sub-cgroup C; # C; (if not already existing)
and move 7; into C}
5: Enable the freezer controller on both C; and C;
6: end for
7: Tasks without any high-contention pair may remain in the
root cgroup

., Tn}, interference matrix I,

4.4.3. Experimental Evaluation

To validate the effectiveness of our cgroup-based interference
mitigation strategy, we conduct a series of experiments, the
goal is to demonstrate that our static cgroup hierarchy and
runtime freezer mechanism can effectively restore temporal
predictability in the presence of heavy memory contention.

Experimental Setup: The experiments are performed on a

Raspberry Pi 4 (Broadcom BCM2711, Quad-core Cortex-A72).
The system runs Raspberry Pi OS Lite with Cgroup v2 en-

abled. We utilize the RT-Bench framework [24]], which ex-

tends the TACleBench suite for periodic real-time execution.

Two tasks constitute our workload:

e We use matrix1 as a victim task (7y;ctim), @ 256 X
4096 x 9 integer matrix multiplication program. Its ~4MB
working set exceeds L2 capacity, making it sensitive to
cache evictions. It has a period of 7' = 100 ms and a rel-
ative deadline of D = 30 ms to simulate a tight real-time
constraint.

¢ Contender Task (7,,0;5¢): We use the bandwidth bench-
mark from the IsolBench suite as the interference source.
This synthetic benchmark issues sequential writes to a
large buffer, saturating memory bandwidth. It has a pe-
riod of T' = 200 ms and a relative deadline of D = 200
ms.

To maximize resource contention, both the victim task and
the interfering workload are pinned to different physical cores
(which are also isolated from the OS execution) using the
cpuset controller. This configuration forces the tasks to
compete for CPU, L1/L2 caches, and memory bandwidth.

We evaluate our workload in three execution scenarios over
100 periodic jobs:

1. Solo: Ty;ctim runs inisolation to establish a baseline worst-
case execution time (WCET).

2. Interference (Unprotected): 7,;ctim and 7,0ise TUN CON-
currently in the same core without any mitigation.

3. Protected: 7,;ctim and 7,5 are placed in separate cgroups
inside the same core as per Algorithm A userspace
monitor program executed in another core polls the CPU
usage of the cgroups (at S0ms intervals) and freezes the
Tnoise group when the CPU bandwidth consumption ex-
ceeds a safety threshold (30%), effectively serializing ac-
cess during peak contention.

Results and Analysis: The results of our evaluation are sum-
marized in Figures[7} [8] and[9]

Execution Time per Job

0.055 —=— Solo
---- Deadline (0.030s)
—— Interference

—— Protected

0.050

2
o 0.045

Execution Tim
e o @9
o © o
W W A
o w o

0.025 A \M

0.020

o 20 40 60 80 100
Job Sequence Number

Figure 7. Job-wise execution times for mat rix1. The dashed
line represents the 30ms deadline

Figure [7] plots the execution time for each of the 100 jobs.
In the Solo case (green), execution time is stable and well
below the 30ms deadline. In the Interference scenario (red),
memory contention causes severe execution time spikes over-
lapping every two consecutive jobs, frequently exceeding the
deadline by up to 2x. In the Protected scenario (blue), the
freezer mechanism successfully detects contention and pauses
the aggressor.

Cumulative Distribution Function of Execution Times

1.0

0.8

>

£

5 0.6

[

3

= —

0.4

'S

a

(9]

0.2 —— Solo
—— Interference

0.0 —— Protected

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055

Execution Time (s)

Figure 8. Cumulative Distribution Function (CDF) of execu-
tion times.

The Cumulative Distribution Function (CDF) in Figure 8] fur-
ther illustrates the impact of our approach on the probability
of jobs satisfying their performance deadlines. The Interfer-
ence curve indicates that a significant portion of jobs suffer
from extreme delays. The Protected curve is steep and closely
aligns with the Solo baseline, demonstrating that our approach
effectively eliminates the worst-case outliers caused by mem-
ory interference.

Finally, Figure 9] quantifies the number of jobs that our vic-
tim task suffers in each execution scenario. In the Solo exe-

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 8

Interferences within a certifiable design methodology for high-performance multi-core platforms

Deadline Miss Ratio by Scenario

50.0%

50

N w N
(=] (=] (=]

Deadline Miss Ratio (%)

=
(=]

0.0%
Solo Interference
Scenario

0.0%
Protected

Figure 9. Deadline Miss Ratio comparison.

cution scenario, T,;ctim meets all deadlines as expected. Un-
der Interference execution, approximately 50% of jobs miss
their deadline. This ratio is consistent with the period rela-
tionship: Tyictim (I’ = 100ms) and 7,055 (I = 200 ms)
overlap on every second job of 7., causing contention in-
duced slowdown precisely when both tasks execute concur-
rently. Such a miss rate is unacceptable for safety-critical
applications. On the other hand, the Protected configuration
eliminates all deadline misses by freezing 7,,,;s. during peri-
ods of high contention exceeding the allowed threshold, en-
suring Ty;ctim completes within its deadline..

5. RELATED WORK

The survey by Lugo et al. [21] categorizes interference miti-
gation techniques based on the targeted shared resource (e.g.
memory, cache, bus) and their integration into the schedula-
bility analysis. Maiza et al. provide a complementary
taxonomy focused on timing verification, distinguishing be-
tween isolation-based and contention-aware approaches, in-
cluding hardware partitioning, scheduling strategies, and hy-
brid solutions. While prior approaches often target individual
aspects of interference, our work introduces a unified method-
ology that encompasses both hardware and software dimen-
sions to enable integrated analysis and mitigation.

Prior work has addressed the challenge of predicting multi-
core contention impact on program execution time, primar-
ily by learning a global contention ratio for whole programs.
Brando et al. [8] proposed the use of Quantile Regression Neu-
ral Networks to estimate the contention-induced slowdown.
Their model leverages event monitors collected during iso-
lated execution to predict this delta value for each program. By
tuning the quantile parameter, their model aim to reduce un-
derestimations and provide safer timing budgets during early
design phases. Courtaud et al. approached the problem
from a different angle. They introduced a rich set of mi-
crobenchmarks to emulate diverse memory behaviours and re-
vealed the limitations of purely bandwidth-based characteri-
zations. By profiling qualitative and quantitative memory fea-
tures using Valgrind, they trained a random forest model to
predict memory contention overheads. While both works sig-
nificantly improve the accuracy of contention ratio prediction

at the whole-program level, they do not address the localiza-
tion of contention effects within the code. In contrast, our
work formulates the problem as an inverse machine learning
task: given global contention observations and static/cache
analysis for each instruction, we aim to identify the code re-
gions most susceptible to shared resource contention. This
finer granularity enables targeted optimizations and better root-
cause analysis of timing variations under interference.

Prior work on dataflow graph fusion like TileFlow [36] and
FuseFlow [[19] has been focused on operator fusion in the con-
text of DNN models deployed on accelerators. These frame-
works are more focused on reducing the amount of memory
transfers via fusion, whereas our approach is focused on op-
timizing the resource usage for more constrained, embedded
platforms. MAESTRO [18] describes dataflow through data-
centric notations, calculating performance metrics through it-
eration analysis rather than our model-inference approach.

Other works on on-line interference analyses for multithreaded
programs [33] focus on modeling the execution of an applica-
tion and predicting interference. This data is then used to in-
fluence the scheduling decisions by the hypervisor running all
applications. This is in contrast to our approach that focuses
on a deterministic execution model and on-line adjustments of
the resources made available by the underlying system. The
system described by the authors can explicitly not handle ap-
plications with an over-saturation of threads.

Techniques that focus on optimizing the cache layout of multi-
threaded applications [29] have also shown promising results.
However, they are focused on optimizing cache usage alone,
neglecting the overhead introduced by task switching and the
changes this brings to the cache layout.

Linux cgroups provide a flexible framework for resource man-
agement and have been adapted to address challenges across
multiple domains.

In the context of real-time systems, Chen et al. [10, [11]] pro-
posed SchedGuard, a temporal protection framework that uses
cgroups to prevent untrusted tasks from executing during spe-
cific time segments, protecting against scheduler-based side-
channel attacks. Their approach demonstrates the effective-
ness of cgroup-based mechanisms for enforcing execution con-
straints. Similarly, our work exploits cgroups to control task
execution, although we focus on mitigating memory contention
rather than timing-based security threats.

Andriaccio et al. [3]] present a cgroup-based real-time sched-
uler integrated with the Linux deadline server infrastructure to
enforce temporal isolation in IoT and edge environments. By
associating deadline servers with cgroups, they reserve run-
time (Q and period P for groups of fixed-priority tasks, sup-
porting multicore migrations to maintain schedulability un-
der multiprocessor models. Validated on FastFlow stream-
ing applications, it achieves lower response-time variance and
higher throughput than default schedulers. Unlike their fo-
cus on timing predictability for dynamic IoT workloads, our
method leverages cgroups for memory-centric isolation, moni-
toring statistics to trigger freezes and serialize contending tasks,
thereby addressing contention vulnerabilities without relying
on bandwidth reservations.

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 9

Interferences within a certifiable design methodology for high-performance multi-core platforms

For mixed-criticality systems, Kim et al. [17] used cgroups

to separate critical and non-critical tasks, then employed the
CPUFreq governor to throttle non-critical cgroups when mem-

ory contention was predicted, indirectly reducing memory band- (4]
width consumption through CPU frequency scaling. In con-

trast, our work directly prevents co-execution of memory-intensive
task pairs using the cgroup freeze mechanism, avoiding the [5]
need for frequency scaling and its associated performance over-

head on non-contending tasks.

Beyond the real-time domain, cgroups are extensively applied
in cloud computing and virtualized environments, recent work
by Volpert et al. [33]134] examines noisy-neighbor effects that
persist despite CPU isolation using cgroups. They present
a workload-agnostic, online detection technique that instru-
ments the Linux scheduler with eBPF to collect runtime met-
rics—notably scheduling latency and preemption frequency—and (71
use those signals to identify interference between supposedly
isolated cgroups. Their results show that scheduler-level inter-
actions can break the practical isolation guarantees of cgroups,
motivating adaptive, runtime-aware countermeasures. Build-
ing on these findings, our contribution extends cgroups beyond
static limits by combining runtime contention monitoring and
reactively prevent concurrently running task pairs when mea-
sured interference exceeds configurable thresholds. [8]

(6]

6. CONCLUSION & FUTURE WORK

In this paper, we presented the initial steps of an interference-

aware design methodology for high-performance multi-core
systems. The current results are preliminary but they out- [9]
line a workflow that combines formal analysis, profiling, and
system-level control to mitigate memory interference. Future
work will investigate the scalability of the approach, its robust-
ness across diverse workloads and hardware platforms, and its
applicability to heterogeneous CPU-GPU and NUMA archi-
tectures.

[10]

ACKNOWLEDGEMENT

This work is partially funded by the Deutsche Forschungs- [11]
gemeinschaft (DFG, German Research Foundation) through

the InterMCore project (Grant No. 505744711) and by the
Agence Nationale de la Recherche (ANR) under Grant No.
ANR-22-CE92-0066.

[12]
REFERENCES

[1] Alif Ahmed and Kevin Skadron. Hopscotch: a micro-
benchmark suite for memory performance evaluation.
In Proceedings of the International Symposium on
Memory Systems, MEMSYS °19, page 167-172, New [13]
York, NY, USA, 2019. Association for Computing Ma-
chinery. ISBN 9781450372060.

[2] Abderaouf N Amalou, Elisa Fromont, and Isabelle
Puaut. Cawet: Context-aware worst-case execution [14]
time estimation using transformers. In ECRTS 2023-
35th Euromicro Conference on Real-Time Systems,
volume 262, pages 7-1. Schloss Dagstuhl-Leibniz- [15]
Zentrum fiir Informatik, 2023.

[31 Yuri Andriaccio, Luca Abeni, and Massimo Torquati.

Scheduling iot applications in real-time control groups. [16]
In 2025 21st International Conference on Distributed

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026

Computing in Smart Systems and the Internet of Things
(DCOSS-10T), pages 01-08. IEEE, 2025.

Simon Arridge, Peter Maass, Ozan Oktem, and Carola-
Bibiane Schonlieb. Solving inverse problems using
data-driven models. Acta Numerica, 28:1-174, 2019.

Michael Bechtel and Heechul Yun. Cache bank-aware
denial-of-service attacks on multicore arm processors.
In 2023 IEEE 29th Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), pages 198—
208. IEEE, 2023.

Jiahong Bi, Guilherme Korol, and Jeronimo Castril-
lon. Leveraging the mlir infrastructure for the com-
puting continuum, September 2024. URL https:
//doi.org/10.5281/zenodo.13898631.

Frédéric Boniol, Youcef Bouchebaba, Julien Brunel,
Kevin Delmas, Thomas Loquen, Alfonso Mascare-
nas Gonzalez, Claire Pagetti, Thomas Polacsek, and
Nathanaél Sensfelder. PHYLOG certification method-
ology: a sane way to embed multi-core processors. In
10th European Congress on Embedded Real Time Soft-
ware and Systems (ERTS 2020), Toulouse, France, Jan-
uvary 2020. URL https://hal.science/hal-
02441323\

Axel Brando, Isabel Serra, Enrico Mezzetti, Jaume
Abella, and Francisco J Cazorla. Using quantile re-
gression in neural networks for contention prediction in
multicore processors. In 34th Euromicro Conference on
Real-Time Systems (ECRTS 2022). Schloss Dagstuhl-
Leibniz-Zentrum fiir Informatik, 2022.

Certification Authorities Software Team (CAST).
CAST-32A: Position Paper on Multi-core Processors,
November 2016.

Jiyang Chen, Tomasz Kloda, Ayoosh Bansal, Rohan
Tabish, Chien-Ying Chen, Bo Liu, Sibin Mohan, Marco
Caccamo, and Lui Sha. Schedguard: Protecting against
schedule leaks using linux containers. In 2021 IEEE
27th Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), pages 14-26. IEEE, 2021.

Jiyang Chen, Tomasz Kloda, Rohan Tabish, Ayoosh
Bansal, Chien-Ying Chen, Bo Liu, Sibin Mohan, Marco
Caccamo, and Lui Sha. Schedguard++: Protecting
against schedule leaks using linux containers on multi-
core processors. ACM Transactions on Cyber-Physical
Systems, 7(1):1-25, 2023.

Cédric Courtaud, Julien Sopena, Gilles Muller, and
Daniel Gracia Pérez. Improving prediction accuracy of
memory interferences for multicore platforms. In 2079
IEEE Real-Time Systems Symposium (RTSS), pages
246-259. 1IEEE, 2019.

Leonardo Dagum and Ramesh Menon. Openmp: an
industry standard api for shared-memory programming.
IEEE computational science and engineering, 5(1):46—
55, 1998.

EASA. AMC (Acceptable Means of Compliance) 20-
193 on the use of multi-core processors (MCPs), 2020.

International Organization for Standardization (ISO).
ISO 26262: Road Vehicles — Functional Safety, 2018.
Second Edition, Parts 1-12.

Tejun Heo. Control group v2 — the linux kernel docu-
mentation, October 2015. Accessed: 2025-11-18.

10

https://doi.org/10.5281/zenodo.13898631
https://doi.org/10.5281/zenodo.13898631
https://hal.science/hal-02441323
https://hal.science/hal-02441323

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Interferences within a certifiable design methodology for high-performance multi-core platforms

Jungho Kim, Philkyue Shin, Soonhyun Noh, Dae-
sik Ham, and Seongsoo Hong. Reducing memory
interference latency of safety-critical applications via
memory request throttling and linux cgroup. In 2018
31st IEEE International System-on-Chip Conference
(SOCC), pages 215-220. IEEE, 2018.

Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar,
Tushar Krishna, Michael Pellauer, and Angshuman
Parashar. Maestro: A data-centric approach to under-
stand reuse, performance, and hardware cost of dnn
mappings. IEEE micro, 40(3):20-29, 2020.

Rubens Lacouture, Nathan Zhang, Ritvik Sharma,
Marco Siracusa, Fredrik Kjolstad, Kunle Olukotun,
and Olivia Hsu. Fuseflow: A fusion-centric compila-
tion framework for sparse deep learning on streaming
dataflow. arXiv preprint arXiv:2511.04768, 2025.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert
Cohen, Andy Davis, Jacques Pienaar, River Riddle, Ta-
tiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-
nenko. Mlir: scaling compiler infrastructure for domain
specific computation. In IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO),
CGO 21, page 2—14, Seoul, Korea (South), 2021. IEEE
Press. ISBN 9781728186139.

Tamara Lugo, Santiago Lozano, Javier Fernandez, and
Jesus Carretero. A survey of techniques for reducing
interference in real-time applications on multicore plat-
forms. IEEE Access, 10:21853-21882, 2022.

Claire Maiza, Hamza Rihani, Juan M Rivas, Joél
Goossens, Sebastian Altmeyer, and Robert I Davis. A
survey of timing verification techniques for multi-core
real-time systems. ACM Computing Surveys (CSUR),
52(3):1-38, 2019.

Alfonso Mascarenas-Gonzalez, Frédéric Boniol, Ben-
jamin Lesage, and Claire Pagetti. Towards a vali-
dated core memory model through (mp)soc events. In
2025 28th International Symposium on Real-Time Dis-
tributed Computing (ISORC), 2025. doi: 10.1109/
ISORC65339.2025.00027.

Mattia Nicolella, Shahin Roozkhosh, Denis Hoornaert,
Andrea Bastoni, and Renato Mancuso. Rt-bench: An
extensible benchmark framework for the analysis and
management of real-time applications. In Proceedings
of the 30th International Conference on Real-Time Net-
works and Systems, pages 184-195, 2022.

Raspberry Pi. ARM Cortex-A72 MPCore Pro-
cessor Technical Reference Manual —1rOp3, Decem-
ber 2016. URL https://developer.arm.com/
documentation/100095/0003/?1lang=en.

Raspberry Pi. BCM2711 ARM Peripher-
als, June 2022. URL |https://pip-
assets.raspberrypi.com/categories/
545-raspberry-pi—-4-model-b/
documents/RP-008248-DS-1-bcm2711—
peripherals.pdf.

Raspberry Pi. Raspberry Pi 4 Model B — Datasheet.
https://datasheets.raspberrypi.com/
rpid/raspberry-pi-4-datasheet.pdf,
March 2024.

RTCA, Inc. and EUROCAE. DO-178C/ ED-12C: Soft-
ware Considerations in Airborne Systems and Equip-
ment Certification. RTCA, Inc. and EUROCAE, 2011.
RTCA document DO-178C, EUROCAE document ED-
12C.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026

Subhradyuti Sarkar and Dean M Tullsen. Compiler
techniques for reducing data cache miss rate on a mul-
tithreaded architecture. In International Conference on
High-Performance Embedded Architectures and Com-
pilers, pages 353-368. Springer, 2008.

Till Smejkal, Robert Khasanov, Jeronimo Castrillon,
and Hermann Hirtig. HARP: Energy-aware and adap-
tive management of heterogeneous processors. In
Proceedings 26th ACM/IFIP International Middleware
Conference (Middleware’25), Middleware °25, New
York, NY, USA, December 2025. Association for Com-
puting Machinery.

Stephanie Soldavini, Felix Suchert, Serena Curzel,
Michele Fiorito, Karl Friebel, Fabrizio Ferrandi, Radim
Cmar, Jeronimo Castrillon, and Christian Pilato. Etna:
Mlir-based system-level design and optimization for
transparent application execution on cpu-fpga nodes.
In 2024 IEEE 32nd Annual International Symposium
on Field-Programmable Custom Computing Machines
(FCCM), pages 224-224. IEEE, 2024.

Felix Suchert, Lisza Zeidler, Jeronimo Castrillon, and
Sebastian Ertel. Condrust: Scalable deterministic
concurrency from verifiable rust programs. In 37th
European Conference on Object-Oriented Program-
ming (ECOOP 2023), pages 33—1. Schloss Dagstuhl-
Leibniz-Zentrum fiir Informatik, 2023.

Simon Volpert, Sascha Winkelhofer, Daniel Seybold,
Jorg Domaschka, and Stefan Wesner. The hidden costs
of shared cpu resources: A closer look at cgroups
and qos. In Softwaretechnik-Trends Band 44, Heft 4.
Gesellschaft fiir Informatik eV, 2024.

Simon Volpert, Sascha Winkelhofer, Jorg Domaschka,
and Stefan Wesner. Detecting noisy neighbors in cpu-
isolated cgroups environments. In Proceedings of the
16th ACM/SPEC International Conference on Perfor-
mance Engineering, pages 224-231, 2025.

Yong Zhao, Jia Rao, and Qing Yi. Charac-
terizing and optimizing the performance of multi-
threaded programs under interference. In Proceed-
ings of the 2016 International Conference on Paral-
lel Architectures and Compilation, PACT ’16, page
287-297, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450341219.
doi: 10.1145/2967938.2967939. URL https://
doi.org/10.1145/2967938.2967939.

Size Zheng, Siyuan Chen, Siyuan Gao, Liancheng Jia,
Guangyu Sun, Runsheng Wang, and Yun Liang. Tile-
flow: A framework for modeling fusion dataflow via
tree-based analysis. In Proceedings of the 56th An-
nual IEEE/ACM International Symposium on Microar-
chitecture, pages 1271-1288, 2023.

11

https://developer.arm.com/documentation/100095/0003/?lang=en
https://developer.arm.com/documentation/100095/0003/?lang=en
https://pip-assets.raspberrypi.com/categories/545-raspberry-pi-4-model-b/documents/RP-008248-DS-1-bcm2711-peripherals.pdf
https://pip-assets.raspberrypi.com/categories/545-raspberry-pi-4-model-b/documents/RP-008248-DS-1-bcm2711-peripherals.pdf
https://pip-assets.raspberrypi.com/categories/545-raspberry-pi-4-model-b/documents/RP-008248-DS-1-bcm2711-peripherals.pdf
https://pip-assets.raspberrypi.com/categories/545-raspberry-pi-4-model-b/documents/RP-008248-DS-1-bcm2711-peripherals.pdf
https://pip-assets.raspberrypi.com/categories/545-raspberry-pi-4-model-b/documents/RP-008248-DS-1-bcm2711-peripherals.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://doi.org/10.1145/2967938.2967939
https://doi.org/10.1145/2967938.2967939

	Introduction
	Methodology
	Micro‑architectural Modeling
	Interference Modeling using Machine Learning
	Interference reduction via compilation
	Interference reduction via cgroups

	How things interact
	Use-Cases & Evaluation
	Micro-architectural Modeling
	Interference Modeling using Machine Learning
	Phase 1: Collecting Interference Timing
	Phase 2: Collecting Instruction and Data Adresses About the Victim
	Phase 3: Training
	Results

	Interference reduction via compilation
	Interference Model
	Compile-Time Optimizations
	Run-Time Management

	Interference reduction via Cgroups
	System Model and Assumptions
	Heuristic for Cgroup Deployment
	Experimental Evaluation

	Related work
	Conclusion & Future Work

