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Abstract—The MYRTUS Horizon Europe project embraces
the principles of the EU CloudEdgeIoT Initiative, integrating
edge, fog, and cloud in a continuum of computing resources.
MYRTUS intends to deliver abstractions, cognitive orchestration
mechanisms, and a whole design environment to build and operate
collaborative, distributed, heterogeneous systems. The goal is to
provide high performance and play a crucial role in enabling
energy efficiency and trustworthiness in nowadays systems.

Index Terms—Computer hardware and architecture, Design
environment, dynamic orchestration, Computing continuum, In-
teroperability, AI.

I. OVERVIEW, CHALLENGES AND OBJECTIVES

The concept of compute continuum has been recently brought
into the field to describe systems that are more than the
sum of cloud, edge, and Internet of Thing functionalities,
where computing breaks boundaries among layers moving the
computation from the device to the farthest data center, and
vice versa, according to application needs and availability of
resources [1]. Several challenges have to be addressed:

CH1 Cloud computing solutions offer high computing and
storage, but struggle to address low-energy and low-
latency application scenarios and privacy concerns. In
contrast, edge computing improves privacy and energy
efficiency, by processing data closer to the source, but with
limited computation and storage capabilities. Integrating
these paradigms in a continuum of computing resources
requires the definition of a Hardware (HW) and Software
(SW) architecture that allows for horizontal (intra-layer)
and vertical (inter-layer) orchestration on heterogeneous
computing components.

CH2 Cloud, edge, and end-devices are typically handled as iso-
lated silos, preventing applications from being seamlessly
deployed and dynamically updated for continuous opti-
mization, strategic to foster efficiency across continuum.

CH3 The more a system is heterogeneous, complex, and re-
quired to be adaptive, the more it is likely for designers
to rely on partially integrated toolchains/methodologies
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tuned for specific aspects. Frameworks and tools exist, but
effective interoperability is still to be reached.

The “Multi-layer 360° dYnamic orchestration and interop-
eRable design environmenT for compute-continUum Systems”
(MYRTUS) Horizon Europe project [2] aims at:

OBJ1 Defining a reference infrastructure where a diversity of
fog and edge devices converge with the cloud to form a
computing continuum capable of addressing the needs of
complex and dynamic systems.

OBJ2 Featuring a runtime orchestration scheme, embodied
within the “Multi-layer 360° dynamIc RunTime Orchestra-
tion” (MIRTO) Artificial Intelligence (AI)-powered cog-
nitive engine, to guarantee high performance and energy
efficiency, preserving security and trust.

OBJ3 Providing a reference Design and Programming Environ-
ment (DPE) for continuum computing systems, featuring
interoperable support for cross-layer modelling, threat
analysis, Design Space Exploration (DSE), application
modelling, components synthesis, and code generation.

Fig. 1. Pillars and consortium.

The consortium counts fourteen participants from eight coun-
tries aiming to tackle the aforementioned objectives developing
technologies grouped under three main technical pillars, as
shown in Figure 1.

The MYRTUS Continuum Computing Infrastructure
(MYRTUS technical pillar 1, see Section III) provides the key
enabling technologies to realize horizontal and vertical com-
position for seamless execution of complex Workloads (WLs).
Universidad Politécnica de Madrid (UPM), Università degli
Studi di Cagliari (UNICA), Università degli Studi di Sassari
(UNISS), and Canon Research Centre France (CRF) are pro-



viding advances at the edge, and working together with HIRO-
MicroDataCenters B.V. (HIRO), Abinsula S.r.l. (ABI), TNO, and
Università della Svizzera Italiana (USI) in the integration of
a secure, scalable, distributed and heterogeneous computing
continuum compatible with the Gaia-X Trust Framework.

The MIRTO Cognitive Engine (MYRTUS technical pillar 2,
see Section IV) is the core of the project and focuses on high-
level orchestration for continuous optimizations, to maximize
performance and energy efficiency across the continuum. TNO,
in close cooperation with ArubaKube S.R.L. (ARK), for the
automation and deployment aspects, is leading the definition
of the cognitive engine architecture that leverages swarm intel-
ligence and Federated Learning (FL) technologies, brought re-
spectively by Lakeside Labs GMBH (LAKE) and King’s College
London (KCL), to provide different orchestration goals: WL
management (TNO, LAKE, KCL), node management (UNISS,
UNICA, ABI, UPM), network management (KCL), and privacy
and security management (USI).

The MYRTUS DPE (MYRTUS technical pillar 3, see Sec-
tion V) integrates strategies and tools for modelling, design and
programming in an interoperable framework to ensure solution
uptake. Model-based strategies are foreseen for 1) system-
level analysis/characterization (Softeam (SOFT), LAKE, TNO),
2) high-level application definition (USI, SOFT, Technische
Universität Dresden (TUD)), and 3) DSE support and device
specialization (TUD, UPM, UNISS, UNICA, ABI).

MYRTUS technologies will be assessed in two different
application scenarios: Smart Mobility (developed jointly by
TNO and CRF) and Virtual Telerehabilitation, (developed
jointly by UNICA and Forge Reply S.r.l. (REPLY)) ensuring
that the project delivers real-world benefits to users.

The rest of this paper is organized as follows. Section II
describes the undertaken steps towards the compliance with
EUCloudEdgeIoT.eu Initiative (EU-CEI). Sections III to V
provide a snapshot of the status of MYRTUS technical pillars.
Section VI concludes with the current ongoing activities.

II. TOWARDS STANDARDIZATION: ALIGNMENT WITH THE
EUCLOUDEDGEIOT.EU INITIATIVE

The EU-CEI initiative defines a reference architecture for the
continuum to be promoted as a standard. EU-CEI has identified
eight categories, the Building Blocks (BBs) of a computing
continuum infrastructure, representing the technical processes
to operate applications along the continuum [1]. Its motivations
and goals are compatible with the MYRTUS technologies and
objectives presented in Section I and in these first months of the
project, we made the effort to frame the MYRTUS technologies
in the context of the EU-CEI reference architecture.

The goal of this activity is, on one hand to make a first
step towards the standardization of the MYRTUS technologies.
On the other hand, MYRTUS aims at feeding/contributing to
EU-CEI by providing 1) concrete implementation examples on
real test cases for all the BBs, and 2) an additional BB.

Table I shows a summary of the framing effort. The infras-
tructure and its management are strongly interleaved and there
cannot be a complete distinction between EU-CEI BBs pertain-
ing just to MYRTUS technical pillar 1 or to MYRTUS technical

pillar 2. For example, in terms of resource management and
orchestration, specific support at the infrastructure level will be
provided by Kubernetes1, while at the Cognitive Engine level,
in combination with the AI BB, decisions for orchestrating the
tasks over resources will be made.

The EU-CEI reference architecture does not address the
problem of turning applications into executable implementa-
tions. This is non-trivial for architectures that rely on het-
erogeneous families of CPUs and it becomes progressively
more challenging as HW accelerators are introduced in the
architecture. As the MYRTUS-compliant continuum infrastruc-
tures comprise heterogeneous and reconfigurable computing
components the need for a DPE, MYRTUS technical pillar
3, emerged as a fundamental BB to enable the use of the
continuum architecture.

III. MYRTUS COMPUTING CONTINUUM INFRASTRUCTURE
- TECHNICAL PILLAR 1

The MYRTUS reference infrastructure is a composable
layered cloud-fog-edge continuum, integrating heterogeneous,
federated, and collaborative computing components, whose
generic architecture is drafted in Figure 2. The Edge Layer con-
sists of commercial multicores, Heterogeneous Multi-Processor
Systems-on-Chip (HMPSoCs) Field Programmable Gate Array
(FPGA)-based accelerators [3], and adaptive RISC-V proces-
sors with custom computing units [4]. The Fog Layer consists
of Fog Micro Data Centers (FMDCs) and smart gateways [5]
to provide analytics services on medium to long-term data and
to extend the capabilities of edge devices. The Cloud Layer
provides intensive computing, long-term storage, subsystem
monitoring, coordination, data mining, and historical analysis.

Fig. 2. MYRTUS layered computing continuum infrastructure.

To establish a continuum of resources and to dynamically
adjust the computation load over them: 1) all the components
at each layer communicate with their layer-/component-specific
MIRTO agent which, in turn, communicates with the other
layer-/component-specific agents, and 2) all layers support

1https://kubernetes.io/



TABLE I
EUCLOUDEDGEIOT.EU INITIATIVE FRAMING: EU-CEI BBS VERSUS THEIR MYRTUS ENVISIONED IMPLEMENTATION

EU-CEI BUILDING BLOCKS MYRTUS ENVISIONED IMPLEMENTATION
Security and Privacy - Mechanisms for secure data
and transactions between different components.

Built-in infrastructure mechanisms, design and runtime strategies are envisioned, including: 1)
authorization and authentication mechanisms of users/resources, 2) support for data integrity and
availability, based on trustable, accessible, and coherent data exchange, 3) implementation of secure
communication schemes, and 4) support for system integrity leveraging design time threat analysis
and exploiting trust-related KPIs to implement trust and reputation schemes at runtime.

Trust and Reputation - Models for allowing users of
a continuum platform to generate trust in providers or
increase their reputation (mainly in federated models).
Data management - It includes collection, storage,
computation, and actions performed over data.

Functionalities, storage, and processing capabilities are layer-/component-dependent. The envisioned
resources heterogeneity allows capturing a wide variety of requirements challenging the DPE.

Resource management - It entails management of
physical infrastructures and individual devices.

Kubernetes is used as a low-level orchestrator; while, the MIRTO Cognitive Engine covers the
high-level orchestrator role, handling scalability without compromising QoS and heterogeneity.
Aligned with EU-CEI vision, MIRTO optimization goals include latency reduction, throughput
increase, and improved reliability without sacrificing security, privacy and trust. In addition, MIRTO
aims also to reduce energy consumption.

Orchestration - Distributions of workloads, data or
resources for executing a given action.

Network - Connectivity considerations, including pri-
vate networks and activities such as network slicing.

MYRTUS, by construction, aims to define a multi-layer infrastructure set-up. To foster seamless WL
balance at runtime, MYRTUS computing components will embed identical interfaces and support
the same protocols. Moreover, optimal network resource management to balance, where possible,
load and latency is one of the drivers for runtime optimization.

Monitoring and Observability - It is intended
at infrastructure level, including telemetry, and ser-
vice/application level.

In line with EU-CEI monitors classification, we foresee: 1) Application monitoring (status of
the application to identify underperformance issues not related to network/devices), 2) Telemetry
monitoring (connectivity status and information loss), and 3) Infrastructure and Resource monitoring
(status of the components). Observability will be achieved by the MIRTO Cognitive Engine
leveraging a distributed KB to make smart decisions.

Artificial Intelligence (AI) - It is expected to be
embedded in most of the activities performed.

MIRTO Cognitive Engine implements a plethora of different intelligence strategies to master WLs
and resources orchestration at runtime.

Kubernetes as low-level orchestrator. To create a continuum of
information, all layers will share one ontological KB (logical
view), which can be distributed in different layers (implementa-
tion view). This way, data remains close to their consumers but
can be shared between layers for analysis and decision-making.

The EU-CEI BBs will be implemented across the proposed
infrastructure in a target-dependent manner.

• Security and Privacy and Trust and Reputation -
Mechanisms for protecting data, securing communication, and
components authentication, will be implemented. Three secu-
rity levels are envisioned, as reported in Table II. Moreover,
on the cloud side, adherence to the Gaia-X trust model will be
guaranteed2.

• Data Management - Storage and functional capabilities
are layer-/component-dependent. At the edge, local storage in
main memory and ad-hoc, flexible, coprocessing is enabled.
The two fog layer components differ in storage and processing
capabilities, but both serve as edge-cloud bridge. The smart
gateway acts as a hub for data exchange among a diversity
of actors at the edge (e.g., sensors, actuators, HW accelera-
tors, etc.) and the cloud, and supports light local processing;
whereas, the FMDC provides edge services SW stack to support
for big data processing. Concerning the HW, the FMDC pro-
vides disaggregated, heterogeneous, hyper-converged servers,
that are high-performing and energy efficient.

• Resource Management and Orchestration - All the
infrastructure components will support low-level orchestration
to enable WLs offloading/management. For all the edge and
fog components a Linux-based Operating System and support
for Kubernetes have been implemented, including offloading
support to accelerators at the edge.

2https://docs.gaia-x.eu/policy-rules-committee/trust-framework/22.10/

• Monitoring and Observability - FPGA-based edge de-
vices are already instrumented to support basic runtime mon-
itoring through performance monitoring counters and infor-
mation, like latency and energy, are retrieved. Moreover, at
minimum, execution-relevant metrics such as processing, com-
munication latency, and energy consumption will be retrieved
at the Fog Layer. Finally, the definition of trust indicators to be
computed and made available locally at runtime is envisioned.
Observability will be enabled by leveraging a shared KB3,
which will include the Resource Registry/Status (providing a
snapshot of the components availability and their status) along
with other historical information.

• Network - Edge components are expected to connect to the
continuum with standard protocols (through Linux libraries).
As an example, the HMPSoC accelerators are already ca-
pable of establishing secure connections via HTTP with the
smart gateway exchanging JSON packets. The gateway itself
is extremely flexible in terms of connectivity interfaces, it is
customizable with ad-hoc user-defined interfaces, and natively
supports several protocols (e.g. HTTP, MQTT, etc.). The FMDC
is designed to seamlessly integrate with various edge compo-
nents, leveraging standard protocols (e.g. HTTP, MQTT, CoAP
etc.) to maintain secure and efficient communication channels.

• Artificial Intelligence (AI) - computing components in
all layers are already capable of running AI models, which
is mandatory to support the MIRTO agents executed on the
computing continuum infrastructure to support the 360° orches-
tration.

3The use of ETCD, https://etcd.io/, has been considered, being a strongly
consistent, distributed key-value store for data that needs to be accessed by a
distributed system or cluster of machines and already part of the Kubernetes
environment.



TABLE II
MYRTUS ENVISIONED SECURITY LEVELS.

High - PQC resistant Medium - Non-PQC resistant but suitable
for current threats

Low - Lightweight non-PQC considering
components capabilities

Encryption Symmetric encryption primitives as AES-
256 [6].

Symmetric encryption primitives as AES-
128 [6].

Symmetric encryption primitives as
ASCON-128 [7].

Authentication Digital signature schemes, following
the NIST standard, e.g. CRYSTALS-
Dilithium [8], FALCON [9].

Digital signature schemes, e.g. RSA [10],
ECDSA [11].

Digital signature schemes as ECDSA [11].

Key exchange Key encapsulation mechanisms, follow-
ing the NIST standard as CRYSTALS-
KYBER [12].

Key encapsulation mechanisms as
RSA [10].

Key encapsulation mechanisms as
ECDSA [11].

Hashing At least 512 size hash as SHA-512 [13]. At least 256 size hash as SHA-256 [13]. Lightweight algorithms, e.g. ASCON-Hash,
QUARK [14], spongent [15], photon [16].

IV. MIRTO COGNITIVE ENGINE - TECHNICAL PILLAR 2

MIRTO cognitive engine is responsible for high-level con-
tinuum orchestration both at deployment time (when a com-
putation request is issued) and at execution time (while tasks
are already running). This dynamic orchestration entails four
steps executed in loops [17], [18]: 1) sensing of internal and
external triggers for the orchestration; 2) evaluation of aggre-
gated local and global information; 3) decision for resource
allocation/configuration to improve KPIs; and 4) reconfigu-
ration/reallocation. Four primary drivers for optimization are
there: optimal workload execution (e.g. improving throughput
and/or latency), optimal network usage (e.g. reducing network
congestion, while guaranteeing adequate computing power),
optimal node configuration (e.g. trading-off QoS to minimize
energy consumption in specific components), and privacy and
security guarantees (e.g. changing the adopted set of compo-
nents according to the requirements of a newly incoming task).

The preliminary architecture of a MIRTO Cognitive Engine
agent is depicted in Figure 3. At all layers, the MIRTO
agents communicate with each other to negotiate the usage of
resources and interoperability of services over multiple layers.
At this stage, this is the initial architecture proposal:

• MIRTO Agent - Creates a MIRTO Application Program-
ming Interface (API) Daemon defining the MIRTO agent as a
(web-)service with a specification for its API. This REST-like
API establishes how users will request orchestration activities
to the MIRTO agent using a Topology and Orchestration
Specification for Cloud Applications (TOSCA)4 Object Model.
It also provides a security module for user authentication
(Authentication Module) and TOSCA description validation
(TOSCA Validation Processor).

• MIRTO Manager - Unifies the four optimization drivers
into the MIRTO Manager (whose internal architecture is cur-
rently under definition) that is responsible for deciding on the
allocation of resources managed by the agent and/or on the
configuration of the specific target chosen for execution.

• Proxies - Proposes interface points (proxies) to the KB and
the deployment mechanism. This latter embodies the MYRTUS
continuum life-cycle controlling strategy based on LIQO5.

4https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
5https://liqo.io/

LIQO allows for clustering and resource virtualization. I con-
stitutes the interface among MIRTO agents and Kubernetes-
based orchestration achieving seamless virtualization of the
underlying infrastructure.

To foster interoperability and portability, the interfaces between
MYRTUS technical pillar 1 and MYRTUS technical pillar 2 are
defined in an implementation-agnostic and target-independent
manner. Nevertheless, for demonstration purposes, the imple-
mentation of the interfaces will be done according to selected
technologies, which are currently under evaluation.

Fig. 3. MIRTO Cognitive Engine Agent.

Here follow the list of EU-CEI BBs supported by the MIRTO
Cognitive Engine.

• Security and Privacy, Trust and Reputation and Data
Management - The MIRTO Manager has four specific drivers,
which are captured through execution requirements, including
security, trust and reputation, or data-related ones. The TOSCA
language offers mechanisms to describe application require-
ments for these aspects. For example, a deployment request
may indicate that some of the SW containers should only run
within a certain security level among those in Table II. Also,
requirements can be placed over the storage of data, e.g. that
they should happen in an encrypted manner. Such requirements
are part of the constraints to be solved by the MIRTO Manager
when making decisions for (re-)allocating, optimizing, and (re-
)configuring execution over the continuum infrastructure.

• Resource Management, Orchestration, and AI - The
MIRTO Manager is the cognitive block within MIRTO. Several
concurrent and complementary approaches are meant to be put
in place. At edge, on FPGA-based accelerators, MIRTO agents
will use Machine Learning (ML)-based models to estimate the
best operating point of a workload and, given the current status,
change configuration accordingly (if needed). The possibility



of combining learned models from different agents using FL
techniques, allowing MIRTO edge agents to evolve based on
each other’s experiences, is currently under consideration. At
the Fog Layer, within FMDC units, the MIRTO agent will
monitor system data, and learn from previous events and inter-
actions making informed decisions to maintain optimal system
conditions in terms of performance, resilience and efficiency.
In general, both at the cloud and Fog Layer, variants of MIRTO
agents will be developed using strategies based on swarm-like
intelligence, FL, and distributed optimization. The goal is to
have different flavors of MIRTO agents, capable of operating
under different AI-based algorithms, suitable to address various
contexts of applications and orchestration challenges.

V. MYRTUS DESIGN AND PROGRAMMING ENVIRONMENT
- TECHNICAL PILLAR 3

The MYRTUS DPE is responsible for creating the deploy-
ment specification for the continuum, including all the exe-
cutables and configuration files to program the heterogeneous
components. Moreover, it exports meta-information with non-
functional properties of the applications to aid the MIRTO
Cognitive Engine in runtime decision-making. To foster inter-
operability among different end devices and tools, the DPE
leverages open-source tools and formats to describe and ex-
change applications, i.e. TOSCA and Multi-Level Intermediate
Representation (MLIR). As shown in Figure 4, the DPE is
composed of three steps: 1) a step for high-level modeling,
simulation, and analysis; 2) a step for turning the model
into a concrete implementation; and 3) a step on node-level
optimization and deployment of key computational kernels of
the application.

• Continuum modeling, simulation and analysis - This
step extensively leverages Modelio6 to: i) model the functional
partitioning of the overall scenario; ii) generate the Attack
Defence Tree (ADT) for the analysis of the threats to which the
system is exposed; iii) provide functional-level requirements,
such as the expected end-to-end latency and fault conditions,
leveraging its internal model-based KPIs estimation capabili-
ties. A major Modelio extension to create the Cloud Service
Archive (.csar) package, which will contain relevant TOSCA
templates, scripts and files to allow workload deployment and
management in Kubernetes-based environments is ongoing.
This extension leverages Modelio CAMEL Designer7 to specify
multiple aspects/domains related to multi-/cross-cloud applica-
tions. FREVO8 generates the local rules for the swarm agents
to be used within the MIRTO Cognitive Engine and exploits
DynAA9 as a simulation engine to test the generated rules and
evaluate the KPIs on simulated scenarios.

• Model to Implementation - Going from the model-
ing level to deployment implies defining the Program Code.
Modelio can extract parts of the applications (Portioned App)

6https://www.modelio.org/index.htm
7CAMEL Designer, https://github.com/Modelio-R-D/CamelDesigner/wiki,

is an open-source Modelio extension based on the Cloud Application Modelling
and Execution Language (CAMEL) language.

8FRamework for EVOlutionary design, https://frevo.sourceforge.net/
9To be released open-source by the end of the project [19]

that require acceleration (e.g., DSP kernels) and can be used
directly to synthesize code. Predefined interoperability mech-
anisms guarantee that implementations can be derived also
from external Design Specific Languages (DSLs) and/or ML
frameworks or taken from existing hand-optimized C/C++
components. The Program Code is then passed to Step 3 for
compilation, optimization, and, in the case of FPGA-based
computing components, also for accelerator synthesis. This
step also connects the DPE to the MIRTO Cognitive Engine.
First, the component-level view of the application is fed to the
MIRTO Cognitive Engine (defining the interface from design
time to runtime, aka from Pillar 3 to Pillar 2) completing the
deployment specification model with all the needed .tosca/.csar
files. Second, Modelio is used to synthesize the swarm agents
to be included in the MIRTO Manager of the Cognitive Engine
from the local rules and Threat Counter Measures Snippets to
mitigate the security threats associated with the ADT.

• Node Level Optimisation and Deployment - This step
results in the executables and bitstreams for running and/or
configuring the different computing components. A common in-
teroperability framework based on MLIR, built atop the MLIR
infrastructure of the EVEREST project [20], is adopted to allow
i) importing third-party codes (from DSLs like [21], [22] or ML
models as Pytorch10 or ONNX11 like [23]), ii) having access
to third-party tools (like polyhedral compilers for optimization
purposes), and iii) compiling code for different targets (as re-
configurable accelerators [24], CPUs, or customizable RISC-V
cores). Mocasin12 [25], a high-level Python-based DSE tool for
heterogeneous many-cores, will be extended to support Coarse-
Grain Reconfigurable Architecture (CGRA) architectures. Main
MLIR dialects to be adopted have been defined. dfg-mlir13

and cgra-mlir dialects will be used to model applications
as dataflows and generate CGRA configurations, respectively.
Numerical kernels can be described with an extension of the
teil [26] dialect, with a NumPy-like front end, with support
for custom data types using the base2 dialect [27].

Existing dialects/tools will be leveraged from the MLIR
ecosystem for accepting inputs in different languages (i.e.,
torch-MLIR and Polygeist) and target i) FPGA, producing
Verilog (through High-Level Synthesis (HLS)) to feed MDC14

for the generation of runtime reconfigurable accelerators, and
ii) CPU/GPU, through the LLVM Intermediate Representation.
For the HLS step, CIRCT-hls15, already used by dfg-mlir,
and Vitis-HLS, already supported by MDC, are currently under
consideration. The deployment specification will be passed
from Modelio to dfg-mlir in TOSCA format (i.e., YAML).
The rest of the application is compiled with standard compilers,
ensuring it can interoperate with the accelerated portions.

The DPE, while representing an important addition to the
EU-CEI BBs, contributes to their implementation as follows.

10https://pytorch.org/
11https://onnx.ai/
12https://github.com/tud-ccc/mocasin
13https://github.com/Feliix42/dfg-mlir
14Multi-Dataflow Composer tool, https://mdc-suite.github.io/
15Circuit IR Compilers and Tools, https://github.com/llvm/circt/tree/main



Fig. 4. MYRTUS Design and Programming Environment.

• Security and Privacy are considered from the very be-
ginning as Modelio provides the ADT of the system and will
synthesize the countermeasures snippets.

• Orchestration and AI are assisted by the initial deploy-
ment specification defined at design time, and by the initial
local rules defined and synthesized for swarm agents.

• Data management on heterogeneous devices, particularly
focusing on the computation over data, is enabled by the DPE
node-level optimization and deployment step.

VI. NEXT STEPS AND FINAL REMARKS

The main characteristics/capabilities of the technical pillars
have been specified in the first months of the project. For each
of them, a preliminary architectural specification and a first set
of requirements, to drive the subsequent implementation and
integration steps, have been drafted and released at M8.

The list below identifies all the ongoing consortium-level
activities, in order of priority.

• MIRTO Manager architecture (Pillar 2): Each MIRTO
Manager handles data and information of various types ac-
cording to the layer/component it operates into. As multiple
drivers are there, different cooperating elements within the
Manager will be there. We are currently modulating respon-
sibility among those elements by identifying specific require-
ments they respond to [28]. For instance, a Node Manager
will put in place directives coming from the WL Manager
to run applications in container form on HMPSoC FPGA-
based accelerators and, depending on the optimization goal
and KPI-based characterization of HW functionalities, it will
also select the configuration for HW acceleration that is most
suitable. To establish deployment or reallocation directives,
the WL Manager will gather information related to i) the
state of resource utilization from the Resource Registry, ii)
historical data and/or AI models from the KB, iii) application
orchestration costs from a Network Manager, and iv) trust and
security constraints from the Privacy and Security Manager.
We expect to finalize MIRTO Manager architecture by M12.

• Knowledge Base (interface between Pillar 1 to 2):
MYRTUS infrastructure and MIRTO Cognitive Engine “share”

information. Application, telemetry, and infrastructure and re-
source monitoring are intended to be made observable, where
and when needed, by MIRTO Cognitive Engine agents. Even
though we are considering the use of ETCD from the Ku-
bernetes environment, the specific technology to be adopted
has not been confirmed yet since the definition of the MIRTO
Manager architecture will set the requirements for it. For sure
the KB is expected to keep track of the current status of
every single component (e.g. supportable security level and
actual security configuration, type of computing node and
their availability, etc.) in the Resource Registry, as well as of
the historical batch data needed to implement, for example,
Reinforcement Learning-based strategy within the Network
Manager. We expect to finalize the adopted KB, how data is
stored there, and how MIRTO Cognitive Engine is assessing
them as soon as the MIRTO Manager architecture is finalized.

• Container Image Registry and Repository (Pillar 1):
The possible technologies to implement them are still under
discussion. Candidate solutions should be easily accessible by
all layers and expose security guarantees (e.g. access controls,
image scanning, etc.). We expect to have a list of possible
solutions for evaluation by M12.

• Deployment Specification (interface between Pillar 3 to
2): The MYRTUS DPE creates the deployment specification
for the MIRTO Cognitive Engine to orchestrate WLs and re-
sources in MYRTUS-compliant computing continuum systems.
Modelio creates the .csar package to allow WLs deployment in
Kubernetes-based environments. This package will include also
relevant metadata information to manage edge-nodes operating
points. As meta-information, we envision a setup similar to the
one presented in [29], [30] where different operating points for
applications are described and leveraged at runtime to improve
energy efficiency. The complete package specification and how
to include all the design-time to run-time information is still
under discussion and will be available after the M18 review.

In parallel to these activities, MYRTUS consortium is also
starting partial integration of all the pillars’ technologies to
be assessed within the mobility and the rehabilitation use cases
already at M18.
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