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Abstract
Data flow analysis is fundamental to modern program op-
timization and verification, serving as a critical foundation
for compiler transformations. As machine learning increas-
ingly drives compiler tasks, the need for models that can
implicitly understand and correctly reason about data flow
properties becomes crucial for maintaining soundness. State-
of-the-art machine learningmethods, especially graph neural
networks (GNNs), face challenges in generalizing beyond
training scenarios due to their limited ability to perform
large propagations. We present DFA-Net, a neural network
architecture tailored for compilers that systematically gener-
alizes. It emulates the reasoning process of compilers, facili-
tating the generalization of data flow analyses from simple
to complex programs. The architecture decomposes data
flow analyses into specialized neural networks for initializa-
tion, transfer, and meet operations, explicitly incorporating
compiler-specific knowledge into the model design. We eval-
uate DFA-Net on a data flow analysis benchmark from related
work and demonstrate that our compiler-specific neural ar-
chitecture can learn and systematically generalize on this
task. DFA-Net demonstrates superior performance over tra-
ditional GNNs in data flow analysis, achieving F1 scores of
0.761 versus 0.009 for data dependencies and 0.989 versus
0.196 for dominators at high complexity levels, while main-
taining perfect scores for liveness and reachability analyses
where GNNs struggle significantly.
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1 Introduction
Data flow analysis is a fundamental technique in compiler
tasks [26, 28, 31], as it helps generate efficient and reliable
code. It systematically examines how variables and expres-
sions propagate through a program, providing crucial infor-
mation for various optimizations and ensuring code correct-
ness. At its core, data flow analysis investigates how values
are defined, used, and modified during program execution
[21]. A critical application is identifying optimization op-
portunities; compilers can make informed decisions about
code transformations while preserving program semantics
by understanding data flow. Standard optimizations such as
constant folding, common subexpression elimination, and
loop-invariant codemotion heavily rely on data flow analysis
information. Security analysis [2], which allows compilers
to detect potential vulnerabilities like uninitialized variable
use and buffer overflow [30], heterogeneous computing opti-
mization [15], and smart contract verification on blockchain
platforms [25] also utilize data flow analysis techniques. The
importance of data flow analysis is growing as programming
languages evolve and new hardware architectures emerge.
Recent research explored the incorporation of data flow

understanding into machine learning (ML) models through
GNNs representing program dependencies [1, 23], attention
mechanisms focusing on relevant data flow patterns [19], and
hybrid approaches combining traditional static analysis with
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Figure 1. Deep Learning models in predicting reachability. RNNs fail due to a lack of graph structure; GNNs/Transformers
because of limited propagation reach. DFA-Net succeeds by using data-flow-inspired propagation, enabling the learning of
graph and data-flow algorithms. Black edges show control flow; red edges show propagation flow.

learned components [18]. These methods aim to reconcile
the pattern recognition ML capabilities with the stringent
correctness requirements of compiler tasks. Developing ML
models with robust reasoning capabilities regarding data
flow is fundamental for ML compilers. Success in this area
ensures code performance and the reliability that modern
software systems demand. In this context, GNNs emerge
as a promising approach for ML, demonstrating impressive
capabilities in processing structured graph data. However,
they display significant limitations when confronted with
complex scenarios. While GNNs excel at handling straight-
forward analyses such as node classification [20, 42] and
link prediction [24, 41], they often fall short when dealing
with more intricate problems. This limitation is particularly
evident in their inability to effectively generalize beyond
their training data’s specific patterns and structures [13].
The challenge lies in the fundamental architecture of GNNs,
which typically relies on local neighborhood aggregation
and may not effectively capture long-range dependencies or
complex abstract relationships. Additionally, typical GNNs
propagate fixed-sized tensors, regardless of the size of the
graph, leading to memory bottlenecks. The generalization
issue is exacerbated when dealing with scenarios that require
complex reasoning capabilities.

This paper presents DFA-Net, a Data Flow Analyses Neu-
ral Network architecture for compilers that effectively ad-
dresses the generalization of data flow analyses in complex
programs. DFA-Net distinguishes itself from conventional
GNNs by its ability to mimic the reasoning process of a
compiler while proportionally scaling memory allocation
according to the program’s complexity, thereby facilitating
the management of increasingly complex code structures.
Unlike traditional models, which follow specific propaga-
tion styles—such as RNNs that propagate linearly and GNNs

and Transformers that aggregate local features—DFA-Net
propagates according to data flow principles, allowing it to
capture global features and providing a more comprehensive
understanding of graph properties and data flows within
programs, as showing in Figure 1.

The DFA-Net model captures data flow properties through
a neural network architecture, enhancing the traditional
data flow analysis framework with learnable components.
Starting with a control flow graph (CFG), DFA-Net con-
siders domains, features, direction, and flow functions. It
operates within specific domains, including nodes, instruc-
tions, and variables, with each assigned distinct features. At
the same time, the direction component facilitates propa-
gation throughout the CFG to support both forward and
backward analyses. By integrating these components, DFA-
Net enhances the foundational data flow analysis framework,
enabling effective generalization and knowledge acquisition
regarding program properties.

Concretely, this paper makes the following contributions:

A novel neural network architecture. DFA-Net is in-
spired by how compilers analyze code – with data-flow anal-
ysis frameworks. It follows the same principles while keeping
the framework’s variation points learnable. It supports a va-
riety of domains: Instructions, variables, and expressions,
making it suitable for various predictive tasks in code analy-
sis and compiler tasks.

A training methodology that enables strong general-
ization from simple to complex program graphs. The
training methodology not only promotes strong generaliza-
tion capabilities but also improves overall performance and
model adaptability.
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A systematic evaluation in data-flow analyses. We as-
sess DFA-Net’s learning capabilities in classical data flow anal-
yses using theAnghaBench benchmark [11]. GNN+ProGraML
[10] serves as the baseline. Our novel approach delivers pre-
viously unattained performance, enabling the model to learn
general solutions applicable to larger, unseen graphs. DFA-
Net achieves an F1-score of 0.999 across multiple data flow
analyses, while ProGraML+GNN has difficulty generalizing
beyond a small training set.
As a result of these contributions, we present findings

demonstrating the feasibility of developing a strong gener-
alization infrastructure that outperforms GNNs and well-
established code representations.

2 Background
2.1 Data Flow Analysis
Data flow analysis is a framework used in compiler design
and program analysis to systematically derive information
about the possible values computed at various points in a
program graph (Definition 2.1) [14]. It operates over a CFG
(Definition 2.2).

Definition 2.1 (Graph). A graph𝐺 is an ordered pair (𝑁, 𝐸),
where:

• 𝑁 is a finite set of nodes.
• 𝐸 ⊆ 𝑁 ×𝑁 is a set of edges representing node connec-
tions.

Definition 2.2 (CFG). A control flow graph is a directed
graph 𝐶𝐹𝐺 = (𝑁, 𝐸, 𝑛𝑒𝑛𝑡𝑟𝑦, 𝑛𝑒𝑥𝑖𝑡 ), where:

• 𝑁 is the set of all program statements or basic blocks.
• 𝐸 is the directed edges representing the control flow
between nodes.

• 𝑛𝑒𝑛𝑡𝑟𝑦 ∈ 𝑁 is the unique entry node where execution
begins.

• 𝑛𝑒𝑥𝑖𝑡 ∈ 𝑁 is the unique exit node where execution
terminates.

In data flow analysis, a fact refers to a piece of information
that can be determined about the state of a program at a par-
ticular point during its execution. These facts are typically
represented as mathematical constraints or logical assertions,
and they are used to reason about the program’s behavior
to perform compiler optimizations or analyses. Data flow
analysis techniques, such as liveness analysis and reaching
definitions, rely on accurately identifying and manipulating
these facts to derive useful insights about the program’s exe-
cution. The precise nature and representation of facts can
vary depending on the data flow analysis. Still, they are a
fundamental component of this widely-used program analy-
sis and optimization approach. We can define the domain of
data flow facts 𝐷 as follows.

Definition 2.3 (Domain of data flow facts). Let P be the set
of all possible program properties or attributes that can be

tracked during the data flow analysis. Then, the domain of
data flow facts 𝐷 is the power set of P, that is 𝐷 = 2P = {𝑑 |
𝑑 ⊆ P}. Each element 𝑑 ∈ 𝐷 is a set of program properties
or attributes representing a specific data flow fact. The set 𝐷
contains all possible combinations of these properties, and
each element of 𝐷 represents a unique data flow fact.

Data flow equations give the relationships between facts
and describe the relationships between data inputs and out-
puts within a system. They define how data transforms as
it flows through a process, expressed as a set of equations
specifying the output of each operation as a function of its
inputs. In data flow analysis, 𝐼𝑁 (Definition 2.4) and 𝑂𝑈𝑇
(Definition 2.5) sets are crucial for iterative algorithms that
compute data flow facts by propagating information across
the CFG.

Definition 2.4 (IN Set). IN(𝑛 ∈ 𝑁 ) ⊆ 𝐷 : The set of data
flow facts entering node 𝑛 before it executes.

Definition 2.5 (OUT Set). OUT(𝑛 ∈ 𝑁 ) ⊆ 𝐷 : The set of
data flow facts exiting node 𝑛 after it executes.

The relationships between these sets are given by the data
flow Equations 1 and 2.

OUT(𝑛) = 𝑓𝑛 (IN(𝑛)) (1)

IN(𝑛) =
⊕

𝑝∈edges(𝑛)
OUT(𝑝) (2)

where:

• 𝑓𝑛 : 2𝐷 → 2𝐷 is the transfer function at node 𝑛, mod-
eling the effect of node 𝑛 on the data flow facts.

•
⊕

is the meet operator that combines data flow facts
from multiple predecessor nodes.

• edges(𝑛) is the set of immediate predecessor or succes-
sors nodes of 𝑛 in the CFG, depending on the direction.

Data flow equations are solved iteratively until a fixed
point is reached, meaning further iterations do not change
the data flow sets as shown in Equation 3.

∀𝑛 ∈ 𝑁 :

{
IN(𝑖 ) (𝑛) = IN(𝑖−1) (𝑛)

OUT(𝑖 ) (𝑛) = OUT(𝑖−1) (𝑛)
(3)

The convergence property of this framework is established
through two essential conditions: monotonicity and finite
height of lattice. Monotonicity ensures that successive itera-
tions maintain a consistent direction of progression within
the lattice structure. In contrast, the finite height condition
provides an upper bound on the number of possible steps
before reaching a fixed point. Together, these conditions
prevent infinite ascending chains and guarantee that the
iterative process eventually stabilizes at a solution.
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2.2 ML for Compiler Tasks
The integration of ML techniques in compiler technology
is rapidly advancing. Early applications utilized Recurrent
Neural Networks (RNNs) primarily to predict potential bugs
within functions based on their code structure [3] or assist in
code completion suggestions [32]. While useful, RNNs strug-
gled with the inherent complexity of program structures and
long-range dependencies within code, limiting their broader
application in compiler optimization.
GNNs, with their ability to model relationships within

graph structures, have proven more suitable for compiler
tasks. GNNs have been successfully applied to binary anal-
ysis [39, 43], vulnerability detection and code similarity
checking [17, 36, 40]. Other applications involve identify-
ing potential vulnerabilities through CFG analysis and pre-
dicting performance bottlenecks based on graph representa-
tions [9, 16, 27, 37]. Additionally, they include device map-
ping and determining optimal thread coarsening factors
[8]. This underscores that graph-based representations can
more effectively capture code’s structural properties than
sequence-based methods for compiler optimization tasks.
Built upon GNN, GNN+ProGraML [10] effectively reasons
about program-wide data flow, addressing issues faced by
previous methods. While GNN+ProGraML enhances per-
formance in downstream optimization tasks, GNNs can be
computationally expensive, and their generalization to un-
seen code patterns remains challenging.

Transformers, known for capturing long-range dependen-
cies, have emerged as powerful tools in compiler optimiza-
tion. One application uses transformers to find binary code
similarity [12]. Another is their use in code translation and
text-to-code generation tasks [34]. Despite their strengths,
the computational cost of training and inferring transform-
ers and the need for extensive training data, which is sig-
nificantly higher than for GNNs on domain specific graphs,
remain significant hurdles.
Large Language Models (LLMs), with their capacity for

understanding and generating natural language, are being ex-
plored for sophisticated compiler tasks. LLMs are being used
for automated code refactoring, suggesting improvements
to existing code based on best practices and style guidelines
[22, 38]. They also show promise in automated code debug-
ging, identifying and suggesting fixes for common program-
ming errors [4, 5, 33]. In the context of compiler analyses,
LLMDFA [35] investigates using LLMs for data flow analysis,
aiming for a compilation-free and customizable approach by
employing LLMs for source/sink extraction, data flow sum-
marization, and path feasibility validation. This approach,
however, encounters challenges such as LLM hallucinations
and the difficulties of dealing with large functions or com-
plex pointer operations. Further, the computational demands
and data requirements for LLMs training and inference are
substantial, motivating lightweight, task-specific models.

A key challenge across all these ML approaches lies in
their ability to generalize beyond the training data. Compil-
ers must handle various code styles, programming languages,
and program structures. An ML model trained only on a spe-
cific dataset may fail to perform adequately when presented
with unfamiliar code. Therefore, developing ML models that
robustly generalize to unseen code patterns is crucial for
their successful integration into real-world compiler sys-
tems, enabling the creation of more efficient and reliable
software.

3 DFA-Net: Learnable Data-Flow Analyses
The DFA-Net model is designed to capture data flow prop-
erties through a neural network architecture. It is a model
tailored for program analysis, enhancing the traditional data
flow analysis framework, described in Section 2, with learn-
able components. DFA-Net merges traditional methodologies
with cutting-edge ML techniques to create an architecture
for robust generalization in data flow analyses, while being
light-weight in comparison to Transformers and GNNs. Fig-
ure 2 presents an overview of the DFA-Net’s architecture. Its
components will be described in the following.

3.1 DFA-Net Architecture
In developing an effective learnable data flow framework,
it is essential to address several key considerations, which
will be elaborated upon in subsequent subsections. DFA-Net
comprises core components, including the domain, features,
direction, and learnable flow functions that utilize value set
tensors to facilitate data propagation.

Domains. The analysis operates within specific domains,
encompassing nodes, instructions, and variables.

Features. Each domain element, such as nodes, instruc-
tions, or variable identifiers, is associated with distinct fea-
tures.

Direction. This component delineates the direction of
propagation throughout the CFG.

Value sets. Value sets consist of the potential values that
can be assigned during the runtime of the data flow analysis,
specifically the IN and OUT sets. These sets serve as the
working memory during the propagation process.

Learnable flow functions. These functions facilitate the
propagation of facts through the graph. The initialization
function initializes the value set, the transfer function dic-
tates how values disseminate across nodes, themeet function
combines data flow facts from multiple paths into a single
value, and the readout function extracts pertinent informa-
tion from the value set.

Integrating core components with learnable functions en-
hances data flow analysis, allowing the model to learn pro-
gram properties. Additionally, the architecture employs a
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Figure 2. DFA-Net begins with an initialization function that generates starting values for each fact. In the propagation phase,
an alternation of transfer and meet function applications determine how a node processes incoming values and produces
output values. This is repeated until a fixed-point is reached. After propagation, the output function maps to a vector or scalar
of the desired property. The training loop determines whether more rounds of optimization are needed.

curriculum learning strategy that gradually increases pro-
gram complexity to ensure robust generalization.

3.2 Core Components: Domains, Features and
Direction

Domains. In DFA-Net, facts are organized into domains
D = {𝐷1, 𝐷2, . . . , 𝐷𝑛}, which represent the key elements
of interest within the CFG, such as the graph itself, nodes,
instructions, and variables. The selection of domains signifi-
cantly influences the model’s expressiveness and memory
usage, as different analyses may necessitate varying levels
of domain complexity. Some facts can be multidimensional;
for instance, if a node possesses a three-dimensional fact, it
can accommodate three floating-point values per node. The
analytical requirements and the computational resources at
hand determine the dimensionality of these facts. The total
number of facts is contingent upon the structure of the graph
𝐺 and the defined domainsD. Facts are constructed based on
examining the graph, meaning that the total count of facts
cannot be established until the number of variables is iden-
tified. This characteristic distinguishes DFA-Net from con-
ventional GNNs, which typically maintain a fixed memory
size per node, causing a memory bottleneck when informa-
tion from too many nodes is compressed into a finite tensor.
In contrast, DFA-Net’s memory allocation is dynamic and
proportional to the number of elements within each CFG.

Features. Each domain is assigned specific features cor-
responding to their CFG roles. These features include node

features, which provide unique identifiers for the nodes; in-
struction features, which capture fundamental attributes of
each program instruction, such as its type; and variable fea-
tures, which detail aspects such as whether a variable is being
defined or utilized as an operand, along with other charac-
teristics relevant to data flow facts, such as the variable’s
type.

Direction. To accommodate both forward and backward
analyses within a cohesive framework, DFA-Net supports
dual-direction propagation. This allows the model to learn
both types of data flow analyses effectively. In a final stage,
the most appropriate value set is selected based on the spe-
cific requirements of the analysis in question.
In the backward direction, values are propagated in post

order, and in the forward direction, values are propagated
in reverse post order. This is typical of standard data flow
analyses but entirely different from GNNs.

3.3 Learnable Components: Value Sets and Flow
Functions

DFA-Net passes around tensors to represent data flow val-
ues. It represents flow functions as many small learnable
Multilayer perceptron (MLP) functions.

Value sets. The value sets serve as the working memory
for propagating data flow facts across the CFG. Implemented
as tensors, they encapsulate the state during the analysis.
Consistent with the traditional data flow analysis framework,
DFA-Net utilizes two types of Value Sets: the IN and OUT sets,
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which correspond to the values entering and exiting each
node after applying flow functions. At the beginning of the
propagation process, Value Sets are initialized, providing
the starting values for subsequent applications of flow func-
tions. As information is propagated through the CFG, the
contents of these Value Sets are dynamically updated, adapt-
ing based on previous values and the features encountered
at each node. Importantly, Value Sets are designed as multi-
dimensional tensors of arbitrary size, enabling the learning
of complex features. Since multiple domains can coexist and
each reserves different dimensions for their facts, a value set
is allowed to be a ragged tensor.

Initialization function. The initialization function, de-
noted as I → V, generates the starting value for each node.
This is modeled using a set of functions, one for each combi-
nation of fact class and instruction type, represented as 𝐴𝐼 ,𝐷

for instruction type 𝐼 and fact class 𝐷 . Each function takes
the features from both the instruction and the fact, yielding
a potentially multidimensional fact value. Specifically, the
function is defined as𝐴𝐼 ,𝐷 : 𝐹𝐼 ×𝐹𝐷 → 𝑉𝐷 . For each node, we
compute these values for every fact and concatenate them
to obtain the complete value.

Transfer function. The transfer function, represented
as I × V → V, defines how a node processes an incoming
value and produces a new output value. This function is
more complex than the initialization function and is broken
into several components. The value of each output fact is
determined by its own features, the features of the node,
and all incoming fact values along with their corresponding
features. We define this with two functions:

1. 𝑇𝐼 ,𝐷 : 𝐹𝐼 ×𝐹𝐷×𝑉𝐷 → 𝑉𝐷 for situations where the input
and output facts are identical regarding their values.

2. 𝑇𝐼 ,𝐷𝑖𝑛,𝐷𝑜𝑢𝑡
: 𝐹𝐼 × 𝐹𝐷𝑖𝑛

× 𝐹𝐷𝑜𝑢𝑡
×𝑉𝐷𝑖𝑛

→ 𝑉𝐷𝑜𝑢𝑡
for cases

where the input fact differs from the output fact. This
function is relevant for learning non-separable data-
flow analyses, which require information about other
facts.

To finalize the output for each fact, we introduce a reduc-
tion function: 𝑅𝐼 ,𝐷 : 𝑉𝐷 ×𝑉𝐷 → 𝑉𝐷 . The initial value for this
reduction comes from 𝑇𝐼 ,𝐷 , the 𝑉𝐷 obtained when the input
and output facts are the same; additional incoming values
are then folded into this initial value using the reduction
function.

Meet function. The meet function, represented as V ×
V → V, combines the current node value with incoming
values. This process serves as a reduction over all incoming
values, with the initial value acting as the starting point for
this reduction. Accordingly, we express this functionality
through functions represented as𝑀𝐷 : 𝑉𝐷 ×𝑉𝐷 → 𝑉𝐷 .

Readout function. To retrieve the final results of the data
flow analysis, a readout function is employed. The approach

for this involves selecting values from the appropriate do-
main. For instance, if a program-level readout is required,
the function would extract results from the graph domain.
Conversely, the relevant information would be pulled from
the node domain for a per-node readout. In cases where
the fact values are multidimensional, an additional learned
function may be utilized to map these values to a scalar
representation.

3.4 Curriculum Learning Strategy
DFA-Net employs a sophisticated curriculum learning strat-
egy [29] that enables systematic learning progression from
simple to complex program structures. This approach is fun-
damental to the architecture’s ability to generalize data flow
analyses comprehensively.
The implementation begins with training on simple pro-

gram graphs with a low complexity, establishing a solid foun-
dation in basic data flow patterns. As a measure of complex-
ity, we use the number of data flow propagation steps, i.e.
applications of the transfer and meet functions, that a stan-
dard data flow algorithm requires to reach a fixed point. The
model must demonstrate perfect accuracy on the training set
before proceeding to testing, ensuring thorough understand-
ing at each complexity level. This stringent requirement
means that testing occurs only when the model achieves
flawless performance on the training data, resulting in selec-
tive test execution throughout the training process.
When the model successfully evaluates the test set but

has not reached the stopping criterion, the complexity of
training graphs automatically increments by one level.

This adaptive complexity mechanism continues challeng-
ing the model with progressively more complex programs
to make training converge faster.
The progressive complexity increment ensures that the

model builds strong foundational knowledge before tackling
more intricate program structures, ultimately reaching more
robust generalization capabilities than traditional GNN ap-
proaches. The curriculum learning approach thus forms a
crucial component of our approach, but can also be part of
other approaches.

4 Evaluation
In this section, we evaluate the performance of DFA-Net
on established data flow analyses. We perform a compre-
hensive set of experiments designed to demonstrate how
our approach addresses the challenges related to generaliza-
tion from simple to complex programs and the limitations
of GNNs. Our experimental evaluation focuses on the two
following key aspects.

Generalization across program complexities. We in-
vestigate the ability of DFA-Net to generalize data flow
analyses from simple training examples to more com-
plex and diverse program structures. This assessment
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Table 1. Data flow analyses and their types. Non Separable analyses (NSA) look across facts, making them harder to learn.
Separable analyses (SA) look just at one fact.

Analysis Meet Function Transfer Function Type

Data dependencies in[𝑛] = ⋃
p∈pred(𝑛) out[𝑝] out[𝑛] = gen[𝑛] ∪ (in[𝑛] \ kill[𝑛]) SA

gen[𝑛] = 𝑒 | 𝑒 is a definition made in node 𝑛
kill[𝑛] = 𝑒′ | 𝑒′is def(var) as in gen[𝑛], 𝑒′ ≠ 𝑒

Definite assignment in[𝑛] = ⋂
p∈pred(𝑛) out[𝑝] out[𝑛] = def[𝑛] ∪ in[𝑛] SA

Dominators in[𝑛] =

{𝑛} 𝑛 is entry⋂
𝑝∈pred(𝑛)

out[𝑝] otherwise out[𝑛] = in[𝑛] ∪ {𝑛} SA

Liveness out[𝑛] = ⋃
s∈succ(𝑛) in[𝑠] in[𝑛] = use[𝑛] ∪ (out[𝑛] \ def[𝑛]) SA

Strong liveness out[𝑛] = ⋂
s∈succ(𝑛) in[𝑠] in[𝑛] =


(𝑛 − {𝑦}) ∪𝑂𝑝𝑑 (𝑒) 𝑛 is 𝑦 = 𝑒,𝑦 ∈ 𝑛

𝑛 − {𝑦} 𝑛 is input (𝑦)
𝑛 ∪ {𝑦} 𝑛 is use (𝑦)
𝑛 otherwise

NSA

Possibly undefined out[𝑛] = ⋂
p∈pred(𝑛) in[𝑝] in[𝑛] = (out[𝑛] ∪ def[𝑛]) \ use[𝑛] SA

Reachability out[𝑛] = ⋃
p∈pred(𝑛) in[𝑝] in[𝑛] = out[𝑛] ∪ {𝑛} SA

is crucial to demonstrate the architecture’s applicabil-
ity to real-world compiler tasks.

Comparison with state-of-the-art models. We com-
pare DFA-Net against existing GNN-based approaches
on the AnghaBench dataset [11]. This comparison
highlights accuracy and generalization capability, un-
derscoring the advantages of incorporating compiler-
specific knowledge into the architecture design.

Through the experiments, we aim to provide compelling
evidence that our compiler-specific neural architecture offers
significant improvements over state-of-the-art models.

4.1 Experimental Setup
Test system and benchmarks. Results discussed in this

paper were obtained on an AMD Ryzen Threadripper 3960X
24-Core Processor 2.2 GHz, 64 GB of RAM, NVIDIA GeForce
RTX 3090, running Ubuntu Linux v20.04. To rigorously eval-
uate DFA-Net’s performance and generalization capabilities
for data flow analysis, we employ AnghaBench [11]. Ang-
haBench comprises over one million compilable C programs
with great diversity in terms of complexity and coding styles.

Dataset. DFA-Net utilizes data flow trace constructs dur-
ing data flow analyses, which are sequences of dataflow
operations that lead to a fixed-point. The pre-processed Ang-
haBench dataset contains traces for the analyses listed in
Table 1. The dataset contains 426K entries, with complexity
ranging from 3 to 448813. The 426K entries result from ex-
tracting unique traces from the one million benchmarks in

AnghaBench (note that CFGs of similar shapes may generate
the same exact trace).

Baseline. We compare our architecture with state-of-the-
art GNN models [7, 8, 10], specifically GNN+CFG, GNN+
CDFG, GNN+ProGraML. We use the same parameters as
described in [10].

Metrics. In the evaluation, we employ three metrics – pre-
cision, recall, and F1-score – to assess model performance
comprehensively rather than rely solely on accuracy. Preci-
sion measures the proportion of correctly identified positive
predictions among all positive predictions, indicating how
reliable the model’s positive predictions are and helping us
understand false positive rates. Recall, also known as sen-
sitivity, quantifies the proportion of actual positive cases
correctly identified, revealing how well the model captures
all relevant instances and helping identify false negatives.
The F1-score, the harmonic mean of precision and recall,
provides a balanced metric particularly valuable in our com-
piler analysis context, where false positives and negatives
can have significant implications for program optimization
and correctness. This combination of metrics is especially
crucial in data flow analyses, where simple accuracy metrics
might mask poor performance and lead to incorrect compiler
optimizations or missed optimization opportunities.

DFA-Net domains and features. We evaluate the model
using three different domains. The domain of nodes, the
domain of instructions, and the domain of variables. Each
domain object is associated with features – the objects of
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Table 2. Performance results of DFA-Net across various program analyses and complexities. The highlighted rows indicate the
analyses where performance degradation occurred.

Complexity
Analysis 100 200 300 400 500 600 700 800 900 1000

Data dependencies Precision 0.918 0.841 0.781 0.794 0.729 0.752 0.723 0.713 0.687 0.745
Recall 0.851 0.824 0.804 0.814 0.769 0.838 0.799 0.776 0.750 0.779

F1 0.883 0.832 0.793 0.804 0.748 0.793 0.759 0.743 0.717 0.761

Definite assignment Precision 1.0 1.0 0.999 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Recall 1.0 1.0 0.999 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Dominators Precision 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
Recall 0.999 0.999 0.996 0.996 0.989 0.993 0.993 0.999 0.984 0.979

F1 0.999 0.999 0.998 0.997 0.994 0.996 0.996 0.999 0.992 0.989

Liveness Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.999 1.0 1.0
Recall 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.0

F1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.0

Strong liveness Precision 0.976 0.968 0.969 0.968 0.926 0.972 0.952 0.943 0.945 0.952
Recall 0.712 0.709 0.680 0.669 0.665 0.684 0.653 0.699 0.704 0.706

F1 0.823 0.818 0.799 0.791 0.773 0.803 0.774 0.803 0.807 0.811

Possibly undefined Precision 0.981 0.978 0.969 0.965 0.940 0.918 0.949 0.920 0.856 0.885
Recall 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

F1 0.989 0.989 0.984 0.982 0.969 0.957 0.974 0.958 0.922 0.939

Reachability Precision 1.0 1.0 1.0 1.0 1.0 0.999 1.0 1.0 1.0 0.999
Recall 0.997 0.996 0.995 0.995 0.993 0.994 0.994 0.991 0.995 0.992

F1 0.998 0.998 0.997 0.997 0.996 0.997 0.997 0.995 0.997 0.996

the node domain have node id as features, objects of the
instruction domain have the instruction type as feature, and
variable domain objects have use and defines of variables as
features. The selected features allow learning the respective
data flow analysis, e.g. a reachability analysis would learn
how to leverage the node id feature, and a strong liveness
analysis the instruction type, as well as the use and define
features of variables.

DFA-Net parameters. The parameters of DFA-Net are as
follows: The initialization function 𝐴𝐼 ,𝐷 consists of 2 hidden
layers of size 4, the transfer function 𝑇𝐼 ,𝐷 of 4 hidden layers
of size 4, the transfer function 𝑇𝐼 ,𝐷𝑖𝑛,𝐷𝑜𝑢𝑡

2 hidden layers of
size 4, and the meet function 𝑀𝐷 2 hidden layers of size 4.
The experiment parameters are as follows: the initial training
complexity is 10, test complexities range from 100 to 1000 in
increments of 100, the number of training samples is 50, and
the number of test samples is 500. The stopping criterion
is set to 𝑠𝑡𝑒𝑝 == 100, 000 or 𝑓 1 >= 0.99, with a maximum
batch size of 256. These parameter values are consistently
used throughout the experiments. We further select the right
analysis direction for each analysis.

4.2 DFA-Net Performance in Data Flow Analyses
As mentioned before, we evaluate DFA-Net on seven com-
mon analyses in compilers: data dependencies, definite as-
signment, dominators, liveness, strong liveness, potentially
undefined variables, and reachability. The evaluation ap-
proach helps assess how effectively DFA-Net adapts learned
patterns from simple cases to complex program structures.
Table 2 summarizes the results of the dataflow analyses.

DFA-Net achieves near-perfect performance in four anal-
yses: definite assignment, dominators, liveness, and reacha-
bility. For these analyses, the model consistently maintains
scores of 0.999 across all evaluation metrics, regardless of
the graph complexity.

The DFA-Net results show interesting patterns at various
complexity levels and types of analysis. In the rows high-
lighted in grey, the model’s performance varies, particularly
depending on the analysis type and the complexity of the
input graphs. For the data dependencies analysis, the model
demonstrates its strongest performance with simpler graphs,
accurately identifying correct relationships and avoiding
false predictions. However, as the complexity of the graphs
increases, there is a decline in performance, with the most
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complex graphs showing nearly a fifth reduction in overall
effectiveness.
The strong liveness analysis presents a more stable pat-

tern across different complexity levels. While it still achieves
its best results with simpler graphs, the decline in perfor-
mance is more modest compared to the data dependencies
analysis. The model’s ability to maintain high accuracy in its
predictions across all complexity levels is particularly note-
worthy, given that this is a non-separable analysis, which is
significantly more complex.
Finally, the model shows its most robust performance

among the highlighted analyses in the case of possibly un-
defined analysis. The results are particularly good on simple
graphs, with minimal decline as complexity increases. One
interesting aspect is the model’s consistent ability to identify
almost all relevant cases across all complexity levels.

The observed performance degradation in higher complex-
ities can be attributed to the substantial difference between
training and testing data complexities (note that DFA-Net
still generalizes orders of magnitude better on complex pro-
grams than the state of the art). The model was trained on
relatively simple graphs but was tested on significantly more
complex ones, creating a challenging generalization scenario.
This performance degradation with increasing problem size
arises from the numerical scalability limits of the learned
data flow functions.
A key element of DFA-Net’s training is its selective test

execution strategy, leading to minimal test evaluations. For
instance, out of the total training steps, the possibly unde-
fined analysis generates test results in only two different
moments. In comparison, the dominator analysis produces
test results in thirty-nine different steps, and all other analy-
ses generate test results in just one.

To illustrate how the progressive complexity mechanism
improves DFA-Net’s performance, we examine the training
process for the dominators analysis. Figure 3 is an example
of how incorrect facts decrease as the training progresses
and complexity gradually increases. For dominators analy-
sis, the training complexity ranged from 10 to 48 and was
generalized to test complexities of 100-1000, as shown in the
figure. Through this result, we can observe the effectiveness
of the adaptive complexity approach in helping the model
achieve and maintain high accuracy.

4.3 DFA-Net vs GNNs for Code
We compare DFA-Net with state-of-the-art GNNs, highlight-
ing key differences in their learning and generalization ca-
pabilities.
Table 3 compares the DFA-Net and GNN models on the

analyses implemented in the baseline [8, 10]. As can be seen
from the table, DFA-Net greatly outperforms existing GNNs
across the board. While working with a small dataset of only
50 training samples, DFA-Net showcases great performance,
highlighting its ability to learn effectively from minimal data.

This achievement is notable given the significant complexity
difference between training and testing environments.
Traditional GNNs face two key problems, which reflect

in the experimental results. First, their reachability is lim-
ited, as GNNs propagate can only a finite/pre-defined num-
ber of steps, whereas DFA-Net’s learned flow functions can
be applied a infinite number of times. Second, the bottle-
neck problem, where GNN model performance degrades
with increasing propagation steps due to the exponential
increase in arriving information. DFA-Net on the other hand
limits the information arriving at a node to the relevant
control-flow edges. In combination, these challenges make
it difficult for GNNs to learn generalizable solutions, mak-
ing their performance substantially lower when limited to
small training samples. The situation becomes even more
challenging for these networks when they encounter test
cases with complexity levels far exceeding their training
examples. In addition, the disparity between training and
testing complexity poses a significant challenge for non-
compiler-informed GNNs. While training occurs on graphs
with complexity level 10, the test set contains graphs rang-
ing from 100 to 1000. This substantial jump in complexity
reveals the critical weakness in traditional GNNs, as they
struggle to generalize their learned patterns to more com-
plex scenarios. Instead of learning generalizable solutions,
GNNs exhibit signs of overfitting to the specific character-
istics of the training data, making them less effective when
encountering new, more complex programs. This limitation
is particularly problematic in real-world scenarios where
training data may be scarce. Our results highlight the power
of having a compiler-informed architecture that effectively
leverages domain knowledge to learn even with minimal
training examples. This is the way DFA-Net displays such
robust generalization capabilities.
Comparing the different models, GNN+ProGraML has

a substantially larger number of parameters, with 863,774,
more than 26 times those of GNN+CFG (17,118) and GNN+
CDFG (15,928) combined. Most notably, DFA-Net achieves
superior performance while utilizing only 397 parameters,
approximately 43 times less than GNN+CFG and 40 times less
than GNN+CDFG. DFA-Net demonstrates that better results
can be achieved with a more compact architecture, which is
3 orders of magnitude smaller than GNN+ProGraML while
delivering enhanced performance. While GNN+ProGraML
outperforms DFA-Net in computational efficiency, with a
significantly shorter training time of 461.99 seconds (6 times
faster than DFA-Net’s 2852.51 seconds) and a faster inference
time of 10.05 seconds (nearly 4.5 times quicker than DFA-
Net’s 45.68 seconds), the primary goal is to achieve better
results. DFA-Net’s ability to deliver superior performance
with a smaller and simpler architecture ultimately outweighs
the computational efficiency advantage of GNN+ProGraML,
emphasizing the importance of model effectiveness over
speed.
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Figure 3. Performance of adaptive complexity approach in dominator analysis, with each color representing a test complexity.

Table 3. DFA-Net and GNN performance across different levels of complexity. Highlighted columns indicate the best models.

Complexity = 100 Complexity = 1000
Analysis CFG CDFG ProGraML DFA-Net CFG CDFG ProGraML DFA-Net

Data dependencies Precision 0.103 0.058 0.114 0.918 0.03 0.015 0.005 0.745
Recall 0.364 0.202 0.049 0.851 0.391 1.0 0.857 0.779

F1 0.161 0.089 0.069 0.883 0.056 0.029 0.009 0.761
Dominators Precision 0.293 1.0 0.237 0.999 0.231 0.164 0.109 0.999

Recall 0.977 0.034 0.204 0.999 0.998 0.976 0.986 0.979
F1 0.451 0.066 0.217 0.999 0.375 0.281 0.196 0.989

Liveness Precision – – 0.151 0.999 – – 0.061 1.0
Recall – – 0.999 0.999 – – 1.0 1.0

F1 – – 0.263 0.999 – – 0.115 1.0
Reachability Precision 0.439 0.421 0.458 1.0 0.685 0.348 0.426 0.999

Recall 1.0 0.988 0.915 0.998 0.874 0.982 0.992 0.992
F1 0.610 0.591 0.609 0.999 0.768 0.514 0.596 0.996

5 Conclusions
In this paper, we introduced DFA-Net, a novel neural net-
work architecture inspired by traditional data flow analysis
frameworks used in compilers. By employing a model tai-
lored for program analysis and enhancing the traditional
data flow analysis framework, DFA-Net provides strong gen-
eralization.

Our experiments demonstrated that DFA-Net consistently
outperforms state-of-the-art GNNs in data flow analysis
tasks. GNNs often struggle to generalize beyond the specific
patterns present in their training data and require extensive
datasets to learn meaningful representations. In contrast,
DFA-Net showed remarkable generalization capabilities, ef-
fectively learning from minimal training data and maintain-
ing high performance even as the complexity of the program

graphs increased. In conclusion, DFA-Net represents a signif-
icant step forward in applying neural networks to compiler
data flow analysis.

Future exploration includes using DFA-Net to predict code
properties and analyze learned data flow functions.
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