
Computer Science, Institut für Technische Informatik, Chair of Compiler Construction

Automatic compiler-based
differentiation of distance functions
Tendsin Mende
Matriculation number: 4680252

Master Thesis
to achieve the academic degree
Master of Science

First referee
Prof. Dr. Jeronimo Castrillon
Second referee
Prof. Dr. rer. nat. Stefan Gumhold
Supervisor
Karl F. A. Friebel

Submitted on: 29th November 2024

Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit mit dem Titel Automatic compiler-based
differentiation of distance functions selbstständig und ohne unzulässige Hilfe Dritter verfassthabe. Es wurden keine anderen als die in der Arbeit angegebenen Hilfsmittel und Quellenbenutzt. Die wörtlichen und sinngemäß übernommenen Zitate habe ich als solche kenntlichgemacht. Es waren keine weiteren Personen an der geistigen Herstellung der vorliegendenArbeit beteiligt. Mir ist bekannt, dass die Nichteinhaltung dieser Erklärung zum nachträglichenEntzug des Hochschulabschlusses führen kann.

Dresden, 29.11.2024Ort, Datum Unterschrift

2

Abstract
Domain specific compilers can be leveraged to optimize implicit distance functions, like signeddistance functions. Widely employed automatic differentiation techniques, combined with do-main specific knowledge can increase the fitness of such compilers for an even wider array oftasks. Based on a broad survey of automatic differentiation techniques in different scientificdomains, as well as a review of existing methods, a distance-function domain specific approachon the compiler level is realised. It is then compared against other existing methods as well astested for fitness in different applications.

Zusammenfassung
Domänenspezifische Compiler können zur Optimierung impliziter Distanzfunktionen einge-setzt werden. Weit verbreitete automatische Differenzierungstechniken, kombiniert mitdomänenspezifischem Wissen, können die Eignung solcher Compiler für ein noch breiteresSpektrum von Aufgaben erhöhen. Auf der Grundlage einer umfassenden Übersicht über au-tomatische Differenzierungstechniken in verschiedenen wissenschaftlichen Bereichen sowieeiner Überprüfung bestehender Methoden wird ein domänenspezifischer Ansatz für Distanz-funktionen auf Compilerebene realisiert. Dieser wird mit anderen existierenden Methodenverglichen und auf seine Tauglichkeit in verschiedenen Anwendungen getestet.

Contents
1. Introduction 71.1. Motivation . 71.2. Distance functions . 81.3. Vola: The volume language . 91.3.1. Introduction to the language . 91.3.2. Compiler technology . 111.3.3. Regionalized Value State Dependency Graph introduction 11
2. Background and related work 132.1. Introduction . 132.2. Distance field implementations . 132.2.1. Code targeting domain specific languages 132.2.2. Distance field modeling kernels . 142.3. Applications of automatic differentiation in the distance field domain 142.3.1. Unit gradient fields . 152.3.2. Differential engineering and design space exploration 152.3.3. Distance field (re)construction . 152.3.4. Implicit shape rendering . 162.4. Automatic differentiation survey . 162.4.1. On structuring this field . 172.4.2. Basics of AD . 172.4.3. By Mode . 182.4.4. By Optimization . 212.4.5. By transformation level . 242.4.6. Reviewing tool . 252.4.7. The case for domain specific compilers . 272.4.8. Distance fields in AD . 27
3. Methodology 283.1. Domain specific considerations . 283.1.1. Forward vs. Backward mode . 283.1.2. Implementation Level . 293.1.3. Optimizations . 293.1.4. Elementary operations . 293.1.5. Differentiability . 303.2. Implementation environment . 313.2.1. Syntax . 31

5

Contents

3.2.2. Integration into the IR . 323.2.3. Code generation concerns . 323.3. Testing the implementation . 323.3.1. Correctness . 323.3.2. Performance . 32
4. Implementation 334.1. Preparation . 334.1.1. Linearization . 344.1.2. Canonicalization . 344.2. Activity analysis . 364.3. Generating derivatives . 374.4. Forward mode . 394.5. Post derivative . 394.6. Future work . 40
5. Evaluation 425.1. Correctness . 425.2. Benchmarking . 435.3. Usability advantage . 445.4. Example use-cases . 455.4.1. Segement tracing approximation . 455.4.2. Normal vector calculation . 495.4.3. Time derivative based animation emphasis 495.4.4. Edge-sharpness based coloring . 505.5. Shortcomings . 51
6. Conclusion 536.1. Future work . 546.1.1. Backward mode . 546.1.2. Better approximation framework . 546.1.3. DSL Rewriting . 546.1.4. Differential types . 556.1.5. Interval arithmetic . 55
Acronyms 65

A. Appendix 69

6

1. Introduction
Automatic differentiation (AD) is a technique with roots that stretch back several decades, play-ing a crucial role in fields such as optimization, machine learning (ML), and scientific computing.It is often essential for scientific areas that require efficient computation of derivatives. In thisthesis, we provide a comprehensive survey of the current state of the art in AD, focusing onboth the theoretical underpinnings and the practical techniques that have emerged over theyears.Alongside the AD techniques themselves, we explore applications with relations to distancefunction (DF) that use, or would profit from readily accessible derivatives. We explore recentadvantages in image rendering, modeling, and semantic model reconstruction that fit this de-scription.To bridge the gap between the AD techniques and their application areas, we highlight theconnection between the two fields and how a domain specific compiler fills this gap. We discusshow already existing development in AD can be tailored to meet the needs of our specificapplication and how a deeper understanding of the domain at derivative-creation time enablesus to simplify the process itself. This synergy enables us to implement a comparatively simplealgorithmic differentiation step in a distance function domain specific compiler.Our approach leads to a compiler-based AD implementation that leverages high-levelpartially domain specific knowledge to statically compile derivatives that are fit for moderngraphics processing unit (GPU) execution. We compare our approach to Enzyme, another in-compiler AD implementation. It is shown that we obtain comparable runtime performance atmuch shorter compile times for our small, domain specific cases. We also give several exam-ples for improvements to artistic workflows and rendering algorithms.

1.1. Motivation

Distance functions provide a concise, resolution-independent way to mathematically describematter, capturing spatial relationships with elegance and precision. Using a domain specificlanguage (DSL) compiler, we can keep those properties all the way to their actual evaluationas part of some algorithm.Derivatives, a fundamental mathematical tool, align naturally with distance functions by al-lowing us to explore gradients in those fields. A logical next step after creating a distancefunction DSL is to extend it with support for derivatives, combining both concepts to create amore expressive and versatile tool to represent and use distance function in computing.

7

1. Introduction

1.2. Distance functions

DFs in this thesis are all functions that lie in some kind of metric space. Metric space meaningany space, with a notion of distance. An example would be the 3-dimensional Euclidean space,where we can distinguish locations by measuring the distance with a ruler for instance.Distance functions encode this simple fact. In 3D, we can calculate the distance by pluggingin the point in space, from which we want to know the distance to whatever is encoded in thefunction.A popular enhancement to that idea is the signed distance function (SDF). Additionally, tothe distance, it also encodes if the evaluated point lies within something (via a negative sign),or outside of something, via a positive sign.A mathematical formulation of SDFs is to define a distance of 0 as the boundary or surface:

f(p) =


> 0 outside

< 0 inside

= 0 on boundary

Picturing the 2D plot of a SDF helps the intuition. A circle can be defined as:
fsphere(p) = ||p|| − radius

Figure 1.1.: Signed distance function fsphere around (0, 0).
Plotted around the origin of a 2D coordinate system the function can be seen in fig. 1.1.

(a) Box (b) Ring (c) Union box-sphere
Figure 1.2.: Selected SDFs

Similarly, other primitives like boxes, rings, lines, and even splines can be constructed (fig. 1.2).

8

1. Introduction

Combining primitive shapes is comparatively simple for DFs and SDFs. Throughout the years,multiple operations and transformations were established in the SDF community [73, 66, 56].Operations that are sometimes harder to compute in other volume representations, likecutting exact holes into a volume, are comparatively simple to represent in SDFs/DFs.To give an example, consider merging two primitives:A simple union operator might take two signed distances fa(p) and fb(p) and choose thesmaller of the two distance (see eq. (1.1)):
funion(p) = min(fa(p), fb(p)) (1.1)

Visualizing this in fig. 1.2c one can see that the boundary surface now lies on the union ofboth primitives.SDFs are not constrained to those simple operations. Higher level operation like smooth setoperations, edge-avoiding set operations, twisting, mirroring etc. exist.It is to note, that not all of those operations respect all properties of a scalar field, like con-tinuity, differentiability etc.

1.3. Vola: The volume language

The AD of distance fields is implemented in the Vola’s compiler stack. Vola is an experimentalvolume description language by the author, that focuses on GPUs as a compilation target.
1.3.1. Introduction to the language

Vola’s language allows a user to define trees of operations, similar to constructive solid geom-etry (CSG) trees. fig. 1.3 shows a simple model expressed as a subtraction of the left arm andthe right arm. The left arm forms the rounded box, while the right arm constructs a cross ofcylinders that are then subtracted from the rounded box in the top subtraction node. The fullVola source code for the model can be found in fig. A.1.

−

⋃

Cylinder ⋃

Cylinder Cylinder

⋂

Box Sphere

Figure 1.3.: CSG-tree of a simple model.

At some point, the DSL has to communicate to the real world. We do this by defining exportsof our field with an explicit signature. Taking the example from fig. 1.3, we export the calculationof the signed distance field in fig. 1.4.

9

1. Introduction

export eval_sdf(position: vec3){
 csg myfield = my_model();
 eval myfield.Sdf3d(position)
}

Figure 1.4.: Exporting a distance function from Vola.
Notice the eval myfield.Sdf3d(position) expression, which hints a distinct feature ofVola compared to other CSG languages. It allows you to evaluate a CSG tree under different

concepts. For instance, to access the color of your CSG at some position in space, one canevaluate a color concept via eval myfield.Color3d(position).Concepts are defined as transformations of one data type into another (cf. fig. 1.5).
Sdf3d : R3 → R

(a) Mathematical notation
concept Sdf3d: vec3 -> s;

(b) Notation in Vola
Figure 1.5.: Mathematical and Vola’s notation

The question remains how one defines the color, or generally behavior of operations in theCSG. This introduces the last building block: In Vola operations and entities can be defined from
within the language. For instance, the Union operator described in eq. (1.1) is implemented infig. 1.6 for a concept Sdf3d.

operation Union();

impl Union<l, r> for Sdf3d(at) {
 let left = eval l.Sdf3d(at);
 let right = eval r.Sdf3d(at);
 min(left, right)
}

Figure 1.6.: Implementation of min-union from eq. (1.1) in Vola
Returning to the simple model, we can implement the Color concept for all nodes, whichgives us the CSG tree in fig. 1.7a.Note that not all nodes need to implement all concepts. Only nodes that are in use, under aconcept’s interpretation of a tree need to implement the concept. To elaborate: one can definean operation SetColor. A simple operation that just returns a color. This effectively rendersall children to such a node invisible, when the CSG tree is evaluated for Color. Illustratedin fig. 1.7b the tree remains the same size for the black Sdf interpretation of the tree, butshortens considerably under the Color interpretation.
The compiler makes sure, that the tree is valid under a given interpretation at compile time.Practically speaking this makes sure, that the concept, that is being evaluated is implementedeverywhere in the tree. So for instance, if the tree uses an operation Foo, and is evaluated fora concept Bar, the compiler makes sure, that Foo is implemented for Bar.

10

1. Introduction

−

⋃

Cylinder ⋃

Cylinder Cylinder

⋂

Box Sphere

(a) CSG tree with the color concept imple-mented for all nodes.

−

SetColor SetColor

⋃

Cylinder ⋃

Cylinder Cylinder

⋂

Box Sphere

(b) CSG tree with the SetColor node shorten-ing the tree for the Color concept.
Figure 1.7.: Using CSG-operand to shorten CSG-tree under interpretation.

1.3.2. Compiler technology

The frontend is the DSL, shown in section 1.3.1, that is parsed into a high-level abstract syntaxtree (AST). The AST is kept simple in order to be able to use other languages as a frontend,like OpenSCAD [63]. This also allows building the AST not just from source code, but possiblya graphical interface like a node-graph as well.
Vola’s optimizer is based on a graph intermediate representation (IR) called RegionalizedValue State Dependency Graph (RVSDG) [96]. Internally, the compiler employs the multilevel /dialect idea central to newer compiler frameworks like MLIR [69] or xDSL [10].
The output of Vola’s backend is SPIR-V [54], an intermediate representation for GPU codeused by OpenCL and Vulkan. Multiple translators to other proprietary formats like DirectX’sDXIL, or Metal-IR for the Metal graphics API make this a suitable format for cross-platform,cross-vendor applications.

1.3.3. Regionalized Value State Dependency Graph introduction

The implementation is described in the IR terms of the compiler which is an unmodified versionof a RVSDG described in [96]. We introduce the concepts informally to allow the reader to buildan intuition, when later referring to implementation details.The task of the IR is, to describe a program wholistically, that makes analyzing and trans-forming it possible. The RVSDG belongs to the graph-based IRs1 family. There are three fun-damental parts to the graph: Nodes, edges, and regions.A node describes an action, for instance an addition, accessing a value in memory etc.An edge describes a dependency between those nodes. There are two types of edges, valueedges, and state edges. An addition might be connected to the two values it adds via valueedges. A memory-read might be connected to a memory-write via state edge, to signal thatthe memory-write has to be executed before the memory-read.At this point we can already describe small programs by connecting nodes via state or valueedges. We can, however currently not make decisions, loops, or call functions. The remainingpart are inter- and intra-procedural nodes. This is also where the regions come into play. Inter-procedural means that the control-flow won’t leave the current location, while intra-proceduralnodes might move to another region entirely.
1In this case a directed acyclic graph (DAG)

11

1. Introduction

There are two types of intra-procedural nodes, Gamma and Theta nodes. Gamma nodescan be understood as n-way if-then-else construct. It is a node with n-inputs, where the firstinput is an integer describing which sub-region is taken (cf. fig. 1.8a), the remaining inputs arefed to the respective sub-regions of each branch as entry-variables. All branches produce thesame amount of outputs, called exit-variables. The Theta node describes a loop that repeatsexecution until the first result, the theta-predicate, signals finishing of the loop (cf. fig. 1.8b).Any input to that Theta node is also an output, called a loop-variable. Whenever the loop isrepeated, each result of the loop-body is mapped back to the input, if the loop finishes, theresult is instead mapped to the Theta node’s output.Inter procedural nodes describe whenever control-flow leaves, or moves out of its currentprocedure, i.e., function calls, recursion or similar. For our implementation we only need twoconstructs, a function-call, called Apply node, and a function, called a Lambda node. Apply nodestake a value dependency that is connected to a Lambda node as their first input, and theLambda’s arguments as the remaining inputs. The Lambda node contains a single sub-region,the function-body.There are more constructs, and details to the IR, which we don’t mention in this short in-troduction, please refer to [96] for more information. We are however now able to describesimple programs with control-flow and non-recursive function-calls.

(a) Deciding if a value is a or b,depending on c
(b) Looping until the value be-comes 10

(c) Calling a function that adds
42 to an argument

Figure 1.8.: Usage of introduced RVSDG nodes

12

2. Background and related work

2.1. Introduction

In the first part, we show that there are many use cases that profit from differentiation ofdistance functions. There are machine learning like search optimizations, enhancements todistance functions as well as more engineering focused applications like CSG reconstructionfrom unordered data.Turning to AD specifics, the project profits from a long history of research into that matter.First AD systems were described in the 1950s - 1960s. Since that time, AD found its applica-tion in many scientific and engineering contexts. This makes it possible to find already testedtechniques for specific problems.Previous research has already addressed whether and how post-optimization AD shouldbe applied to multi-level compiler toolchains. By combining this with the compiler-like implicitmodeling kernels described in section 2.2.2, we can make informed decisions about imple-menting differentiable signed distance functions in Vola’s compiler.

2.2. Distance field implementations

Before focusing on the use-cases of AD, we review similar projects to Vola. While the amountof distance function domain specific languages is small, we can find two distinct techniques.One embraces the algebraic nature of the topic and tries to create machine executable codeof some form. The other focuses on the creation of volumes, or 3D models, which is alreadythe interpretation of that code into some representation. One could argue that the formerapproach is leaning more into the implicit aspect of distance functions than the other.
2.2.1. Code targeting domain specific languages

The closest SDF compiler to Vola [85] is Raumkünstler [64]. It is a LLVM based just-in-time-compiler (JIT) that transforms a visual node graph into native code. Contrary to Vola that codeis used to calculate a traditional triangle based mesh. Vola in contrast outputs GPU nativecode, that can be used to evaluate the function directly.Bauble [45] is an embedded DSL within the Janet [16] language. Similarly to Vola, andcontrary to Raumkünstler a program is represented by a string. Contrary to both, Vola andRaumkünstler the target is not executable, platform dependent code, but high level GLSL [55]shader code. This compilation target makes it similar to other experimental projects, whichcompile to high level shader languages.

13

2. Background and related work

Notably, none of those languages have the ability to differentiate or otherwise analyze thegenerated distance function.
3D model targeting DSL

A family of DSLs that do not compile to executable code, but employ compiler related opti-mizations is the OpenSCAD family of DSLs, as well as related projects. OpenSCAD describesitself as something like a 3D-compiler that reads in a script file that describes the object andrenders the 3D model from this script file [63]. It could be seen as a domain-specific com-piler that focuses on generating 3D object files. A notable feature is that OpenSCAD supportsintegrating traditional polygonal 3D models into its workflow.ImplicitCAD [75] has a similar approach, but develops out of a functional-language concept.Compared to OpenSCAD it only works with implicit functions.
2.2.2. Distance field modeling kernels

A related field is DF based modelling kernel. Modelling kernel being the terminus used in thecomputer aided design (CAD) application space to describe the core components that trans-forms the high level modelling operations into the final model. Specifically, a niche family ofkernels exists, that internally functions similar to the DSL compilers mentioned before.nTop [49] is a full-fledged CAD application based on such a compiler-like modelling kernel.From version 5 it has its own proprietary implicit modeling kernel [50]. The software is in-teresting because of its sophisticated use of implicit modeling, as well as fielding some novelengineering focused applications like field-driven-design and unit gradient field (UGF) [17] inpractice.
Before switching to its proprietary implicit modeling kernel, nTop was based on LibFive. Firstdeveloped by Matt Keeter [58] it traces its lineage back to Antimony, which was developed atMIT’s Center for Bits and Atoms [59].The latest development of Matt Keeter et al. is Fidget [81] which itself is based on an ex-perimental strategy for implicit surface rendering using interval arithmetic and runtime coderefinement called MPR [60]. All kernels of this lineage share an optimization approach that issimilar to traditional compilers. Distance functions are combined on an algebraic level. Theresulting code is optimized for size, for instance via dead-code-elimination, or for executionspeed via common-subexpression-elimination. MPR and Fidget additionally focus on exploit-ing the massive parallelism of GPUs, by optimizing the code-tape via interval arithmetic.Both MPR and Fidget have the ability to calculate the first derivative via forward AD.

2.3. Applications of automatic differentiation in the distance field
domain

To get a better understanding of what a distance field compiler needs to be able to differen-tiate, we explore the applications of that domain. The following represents a non-exhaustivelist of cases, in which differentiation of distance fields is needed, or useful.It ranges from improvements to the distance functions itself, improvements to the evaluationof distance function based rendering and collision detection in general, to specific professionalapplications in the CAD space and machine learning.

14

2. Background and related work

2.3.1. Unit gradient fields

An interesting field definition related to SDFs, which are common, are UGFs. Intuitively, theycan be understood as a distance field, but the gradient of the field is 1 everywhere. A betterdefinition can be found on Blake Courter’s blog [17] as well as a more formal definition in Luoet al.’s Analysis on SDF [76].Courter explains why the unit-gradient property is important when using DFs in the CADsector [18]. AD comes into play when trying to convert a common signed-distance-field to aunit-gradient-field. Paul D Sampson argues that an approximation of a unit gradient field canbe found for any distance field [99], simply by dividing the distance by the magnitude of thefirst order derivative at the same point1.In conclusion AD of a signed distance field2 would allow us to turn that field into a UGF, fitfor CAD application. A user of the system thus can use the well explored field of SDFs, but canstill benefit from the advantages of UGFs.
2.3.2. Differential engineering and design space exploration

Differential engineering extends the concept of parameterized engineering by enabling opti-mization of sufficiently parameterized models using gradient descent instead of brute-forcedesign-space exploration. This approach requires access to the gradient, which, for distancefunctions, corresponds to the partial derivative with respect to the space parameter(s).The advantages of such processes have been researched in aerospace engineering [19, 35]but also other parameterized computer aided design [11]. While the cited works do not justconsider modelling characteristics, but a wealth of other physical properties, it is safe to saythat AD is needed for automated optimization of engineering efforts.An interesting detail about differentiable 3D CAD programs is the creation of a parameterDAG [11], that is subsequently used for AD. On the surface this looks similar to systems likeFidget [81] or Libfive [58]. However, the system operates on the explicit, vertex-based repre-sentation of the model rather than its implicit representation.
2.3.3. Distance field (re)construction

Two main avenues for distance field reconstruction from other data sources exist. Recognition-based strategies, that try to recognize patterns in attributes of input data and construct aCSG-trees from those. These techniques are often ML based. On the other hand search-based techniques try to fully explain the reconstructed input in terms of CSG operations, whichtypically makes them slower [24].When focusing on the application of ML in the context of DF reconstruction, promising re-sults for creating distance fields from boundary-representations [40], point-cloud and voxel-grid to CSG-Tree construction [113] can be found. It is also possible to convert tessellatedmeshes to distance fields [100] and reconstruct them from images [115] as well.All the ML based approaches benefit from, or require differentiation for a better informedback-propagation step while training. Some mentioned techniques even need to be able todifferentiate not just the model boundary property, but other attributes like color, or shadingproperties too.On the search-based reconstruction side, we see advancements in image to model recon-struction [110], including the color characteristics of a model. Additionally, reconstructionfrom point-cloud [24], or via iterative refinement of CSG-Trees [73] are explored. Friedrich etal. [31] show that techniques can be mixed in multistage hybrid reconstruction.
1Formula 3 in [99]2It still must be differentiable and have non-vanishing gradients, see [99, 17]

15

2. Background and related work

For an overview of reconstruction approaches, see A Survey of Methods for Converting Un-
structured Data to CSG Models [28].This shows that differentiation of distance functions and other encoded data in distancefields are beneficial when reconstructing distance fields or CSG-Trees from other data sources.
2.3.4. Implicit shape rendering

In computer graphics, a popular collision detection and rendering algorithm for signed dis-tance fields is a method called sphere-tracing [43]. This method suffers from bad scaling whenencountering ray-parallel surfaces, and near-misses. Several improvements to the original al-gorithm exist [102] [61] [5] that try to fix this problem via over-stepping, heuristics and otherapproaches. An interesting recent development is the inclusion of local information, called lo-
cal Lipschitz bound3 of the function. This allows [32] to formulate a robust overstepping of the
global Lipschitz bound, which is synonym to the signed distance function in that case. Obtain-ing that local Lipschitz bound, however, is not as simple as just relying on the global Lipschitzbound, which might attribute to the comparatively low usage of this algorithm.A further development of this technique approximates (among other approaches) the localLipschitz bound as the local bounded derivative of the global Lipschitz bound [4] (Cf. 5.1 Linear
Taylor Inclusion Functions in [4]). The advantage over the former technique is the simpleracquisition of a first derivative compared to a local Lipschitz bound.AD would help users of the distance function compiler to implement recently developedadvancements in implicit surface rendering.

2.4. Automatic differentiation survey

Differentiation as a fundamental tool of calculus is in use in almost any math related scientificfield. The following survey will focus on automatic differentiation as a form of differentiation.While symbolic differentiation can be precise in its description of a derivative, in practice, whenworking with programming languages it becomes challenging to describe constructs like loopsin a mathematical sense.Numerical differentiation, that is often based on some form of finite-differences [7]4, canbe implemented efficiently on computer generated code [79]. However, it suffers from impre-cision and bad scaling characteristics for partial derivatives and higher-order derivatives [79,7].Automatic differentiation is a technique that originates in the 1950s to early 1960s [52] [7]. Incontrast to symbolic methods, it always produces a value rather than an expression. It can alsobe applied to algorithms rather than just mathematical expressions. Compared with numericdifferentiation, it does not exhibit the same imprecision and scaling characteristics.The basis for AD forms the observation that all numerical computations are ultimately com-positions of a finite set of elementary operations. If one knows the derivative of each opera-tion, combining the derivatives of the constituent operations through the chain rule gives thederivative of the overall composition [7].It is to note, that symbolic, numeric, and automatic differentiation methods can be mixed [77].When doing so, the characteristics of each method are introduced into the result which arecompared in table 2.1.

3Lipschitz boundedness comes from Lipschitz continuity. Intuitively, this describes functions that are constraint inhow much it can change in a given interval. Another formulation is, that the first derivative is bound for a giveninterval.4Cf. 2.1 AD Is Not Numerical Differentiation in [7]

16

2. Background and related work

Name Output Pro Contra
Symbolic Expression Exact Hard/impossible for generalpurpose code
Numeric Value Simple to implement Bad scaling, approximation,possibly high error range
AD Value Exact, Simple to implement Needs careful implementa-tion for good performance

Table 2.1.: Comparison of the techniques
2.4.1. On structuring this field

AD approaches and implementations can be structured differently:A common method is by-mode, which is either forward- or backward-AD. Both describe away of accumulating parts of the final result in different ways. A third technique are dual-numbers, which we will also categorize as a mode.AD implementation greatly differ based on strategic implementation details and optimiza-tions. We will cover recurring optimizations and classify them based on memory, compile-timeand run-time optimizations.Lastly, implementations can be structured based on the level of code transformation theyare applied on. This means distinguishing domain specific implementation from general pur-pose implementations in general purpose languages, down to post-optimization implementa-tions that work on some form of compiler related intermediate representation.
2.4.2. Basics of AD

When working with scalar or vector fields, which is our main goal, we have to understand theconcept of the Jacobi-Matrix.Given a SDF we observe, that the function is defined as:
fsdf : Rn → R

When differentiating the scalar field, we effectively create a vector field, of that scalar field’sgradient:
f : R3 → R

grad f = (
∂f

∂x
,
∂f

∂y
,
∂f

∂z
) = ∇f

(2.1)

But what happens, if we try to differentiate a vector field, for instance as a second derivativeof a scalar field?If we rewrite a vector field:
v⃗ : R3 → R3

v⃗(x⃗) = (vx(x⃗), vy(x⃗), vz(x⃗))
(2.2)

v⃗(x⃗) is now understood as three scalar fields. By applying the directional derivative fromsection 2.4.2 we get three vectors of three partial derivatives each. By assembling the partialvectors as row vectors in a matrix, we obtain the Jacobi-Matrix Jv⃗ :

17

2. Background and related work

Jv⃗ =


∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy
∂x

∂vy
∂y

∂vy
∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z


Generalized to f : Rn → Rm we obtain the Jacobi-Matrix

Jf =


∂y1
∂x1

· · · ∂y1
∂xn...

∂ym
∂x1

· · · ∂ym
∂xn



2.4.3. By Mode

Forward mode

The basis of the forward AD approach forms the observation, that we can break down thecalculation of any expression by applying the chain rule recursively, until the whole expressionconsists only of known derivatives of elementary operations. As an example, given the SDF ofa sphere with constant radius ∈ R in eq. (2.3):
fsphere(p) = ||p|| − radius (2.3)

For p ∈ R3 an implementation might expand this function to only consist of elementaryoperations (eq. (2.4)):
fsphere(p) =

√
p2x + p2y + p2z − radius (2.4)

We can now build a computational graph for fsphere of eq. (2.4) in fig. 2.1.

p

px x2

py y2

pz z2

+1

+2
√

− fsphere(p)

radius

Figure 2.1.: fsphere computational graph
This graph and the ability to introduce intermediate values, form the basis of AD. The ad-vantage over symbolic differentiation is, that such a computational graph can be built for anyvalue in a program, regardless of the taken control-flow during execution.Forward (accumulation) mode is the naive application of the chain rule to each node in

fig. 2.1. As an example: When calculating the partial derivative for x, we apply the derivative ∂f
∂xto the graph in fig. 2.2.

18

2. Background and related work

The computational graph of fsphere is now transformed to include ∂fsphere(p)

∂x
. Note how the√ node is applied via the chain rule, since the inner part of the square root is an expressioncontaining the variable x. Note that the figure does not include the expansion of g′ for theconstants x & y, which results in the subsequent reduction to 2 ∗ x for the expression g′.

p

px x2

py y2

pz z2

+1

radius

−

+2
√

fsphere(p)

2 ∗1 ∗2 ∂fsphere

∂x

1
2

∗3

Figure 2.2.: Forward differentiation applied to fsphere

∂fsphere
∂x

=
1

2
∗
√
x2 + y2 + z2 ∗ 2 ∗ x =

x√
x2 + y2 + z2

(2.5)
The resulting graph then encodes eq. (2.5), which is the expected partial derivative for x.We only had to know the derivation rules for x2, + and √ (which are our chosen elementaryoperations) to calculate the partial derivative for any parameter.
At run-time x, y and z are substituted to calculate fsphere and ∂f

∂x
.

To get the full 3D gradient of the scalar field describe by fsphere we can derive ∂f
∂y

and ∂f
∂z

the
same way (Cf. eq. (2.2)). This way forward AD can be generalized over n for any scalar field
f : Rn ∈ R.The technique can be generalized to f : Rn ∈ Rm while still needing only n evaluations,see [30] for a real world implementation in Matlab, as well as Elliott’s Beautiful differentia-tion [25] paper and related blog post on generalized derivatives. The initial discovery is de-scribed by Khan et. al. [62].Forward AD works best whenever the number of independent inputs is small, since thenumber of partial derivative evaluations scales with n. For the reverse case, backward-modeis more suitable.
A note on the signed distance domain For standard distance fields, which are usually scalarfields in 3D or 2D space, forward AD could be considered powerful enough. When introducingmore information into the field, like color (typically 3D or 4D), physical parameters, or customparameters, the number of independent input variables can increase, which makes forwardAD increasingly unsuitable. In practice a heuristics based decision of the AD mode, or profilingcan circumvent the problem.
Dual numbers

Dual numbers is an idea discovered in 1873 by William Clifford [14] to describe biquaternionsin the context of rotation and parallel rotation traces. Later the concept was generalized, to

19

2. Background and related work

expressions of the form:
a+ bε where a, b ∈ R, ε2 = 0, ε ̸= 0

Figure 2.3.: Definition of dual numbersIn the context of AD, the basic idea is, that for a function f in dual number space, the following
untangling operation can be defined:

f(a+ εb) = f(a) + f ′(a)bε

Figure 2.4.: Dual number derivative split offThe already known chain-rule applies in the same way to dual numbers. We therefore canexpress the following transformation:
f ′(g(a+ bε)) = f(g(a) + g′(a) ∗ bε) = f(g(a)) + f ′(g(a)) ∗ g′(a)bε (2.6)

Figure 2.5.: Applying first untangling rule followed by the chain rule.When recursively applying eq. (2.6) to a function f(x) we get both, the value f(x) and f ′(x).This is in the same behavior as demonstrated by standard forward AD in fig. 2.2.Rules used in dual-number based differentiation encode the same steps that are taken totransform the computational graph in forward AD [114]. This makes dual-number based AD amathematical interpretation of the idea expressed in section 2.4.3.The example above only considers one derivative. This approach can be extended by usinghyper-dual-numbers for second order derivatives [29]. The disadvantage of forward AD, thatthe process needs to be done for each input variable, remains however.Mature implementations exist in different programming languages like DNAD for Fortran [114],Julia [97], C++ [71] as well as a wealth of semi-professional implementations.
Backward mode

Both forward-mode, and the related dual-numbers based approach scale with the numberof inputs. If the number of inputs is high, and the number of outputs is low, for instance forthe back-propagation step of machine-learning applications or physical science, forward-modebecomes inefficient.Backward accumulation is first described in 1970 [72] in the context of rounding errors incomplex expressions [37].The idea is similar to back-propagation, as that it tries to propagate the derivative back from agiven output. This naturally requires, that the differentiation knows the output value, which isalso the reason for the two-step nature of that algorithm.The first step runs the computation in forward-mode5 to calculate a result of a function f(x) =
y (including all intermediate values for each node in the computational graph, i.g. fig. 2.1).The backward propagation idea originates, again, from the application of the chain-rule to thecomputational graph.The central observation is, that for a function f(g(x)) = y the following holds true for thederivative [47]:

∂y

∂x
=

∂y

∂g

∂g

∂x
(2.7)

With that knowledge we can associate each node vi in the computational graph with an adjoint
vi:

5Sometimes called primal-trace.

20

2. Background and related work

vi =
∂yj
∂vi

vi represents the change of the output variable yj when changing the value vi
6.By applying the rule from eq. (2.7) to each vi, we effectively need to calculate the partial deriva-tive of the outer function (f in eq. (2.7)), with respect to the inner function’s (g in eq. (2.7))change. We also need to calculate the change of the inner function’s change with respect tothe remaining expression (x in eq. (2.7)).

Coming back to fsphere from eq. (2.4) and its computational graph in fig. 2.1 we first run theexpression in forward-mode in table A.2 on the left-hand side. This calculates all intermediatevalues vn.Now we can run the backward trace by applying eq. (2.7) for each dependency of a node vn,by summing up the contributions. Let us observe the square-root node v8. The graph fig. 2.6makes clear, that it only depends on the value from the (in forward-mode) following subtractionof the constant radius. We can therefore build the contribution of v8 as shown in eq. (2.8):
v8 =

∂y

∂v10

∂v10
∂v8

= v10
∂v10
∂v8

(2.8)
Note that the reverse accumulation calculates the derivative of all inputs, for one output, whichpractically is one row of the Jacobi-Matrix.Similar to forward AD, backward AD can be applied to all outputs one after another, to obtainthe full Jacobi-Matrix.The main drawback of reverse AD is, that it needs to save the intermediate variables of theforward-trace. Therefore, memory consumption grows with the number of intermediate vari-ables, which can become a problem in practice.Implementations can circumvent this drawback by only saving needed variables (through data-flow analysis) [20, 103] or via lazy allocation techniques, which is an area of active research [79].
2.4.4. By Optimization

Retaping

Both forward AD and backward AD use an intermediate computational-graph to apply theirrespective technique with respect to either an input, or output variable. The idea of retapingstems from the observation, that the graph stays the same, as long as the expression doesnot change. The step of building the graph, and in the case of reverse AD calculating theintermediate variables can be saved for all executions, following the first one.The application is comparatively simple, but comes with an added memory cost, as specially toforward AD. Mitigation in the form of tape size minimizing [27], or reuse centric and streamabledata structures exist [41].
Checkpointing

For reverse mode AD the memory requirement to compute all adjoint values is in principleproportional to the operation count of the underlying function [39]7.Checkpointing is the idea to only save the program state at defined checkpoints, and recomputethe values in between the checkpoints when needed. This exploits the fact that programscan be split up into multiple segments. Checkpointing effectively allows us to trade memory
6Sometimes called sensitivity in the machine learning space.7Cf. Theorem 3.3 Chapter 12

21

2. Background and related work

𝜕𝑦 𝜕𝑦
=
1

𝜕𝑣
10

𝜕𝑣
9
=
−
1

𝜕 𝑣
10

𝜕𝑣
8
=
1

𝜕𝑣
8

𝜕𝑣
7
=

1
2√
𝑣 7

𝜕𝑣
7

𝜕𝑣
6
=
1

𝜕𝑣
6

𝜕𝑣
3
=
1 𝜕𝑣
6

𝜕𝑣
4
=
1

𝜕 𝑣
7

𝜕𝑣
5
=
1

𝜕𝑣
3

𝜕𝑣
0
=
2𝑣
0
=
0.
26
7

𝜕𝑣
4

𝜕𝑣
1
=
2𝑣
1
=
0.
53
5

𝜕𝑣
5

𝜕𝑣
2
=
2𝑣
2
=
0.
80
2

Forward

Backward

𝑝

𝑣 0
=
𝑝 𝑥
=
1

𝑣 1
=
𝑝 𝑦
=
2

𝑣 2
=
𝑝 𝑧
=
3

𝑣 3
=
𝑝2 𝑥
=
1

𝑣 4
=
𝑝2 𝑦
=
4

𝑣 5
=
𝑝2 𝑧
=
9

𝑣 6
=
𝑣 3
+
𝑣 4
=
5

𝑣 7
=
𝑣 6
+
𝑣 5
=
14

𝑣 8
=
√
𝑣 7
=
3.
74
1

𝑣 9
=
ra
di
us
=
1

𝑣 1
0
=
𝑣 8
−
𝑣 9
=
2.
74
1

𝑦
=
2.
74
1

𝑝

𝑣 0
=
0.
26
7

𝑣 1
=
0.
53
5

𝑣 2
=
0.
80
2

𝑣 3
=
0.
13
4

𝑣 4
=
0.
13
4

𝑣 5
=
0.
13
4

𝑣 6
=
0.
13
4 𝑣 7
=
0.
13
4

𝑣 8
=
1

𝑣 9
=
−
1

𝑣 1
0
=
1

Figu
re2

.6.:
Bac

kwa
rdd

iffe
ren

tiat
ion

app
lied

tof
sp

h
er

e

22

2. Background and related work

for time by placing more (higher memory requirement) or less (higher recomputation timerequirement) checkpoints.Naturally the question arises where to place those checkpoints, how many, and what to actuallysave. Naumann proofs that finding checkpoints in a way, that minimizes the runtime for a givenamount of memory is NP-complete [91].If a program can be split into comparable equal-cost steps, logarithmic growth for both thetemporal and spatial complexity can be realized [36].Gebremedhin et al. also mention several advantages that get unlocked if the evaluation of afunction is time-step-like [33]. Overall, placing checkpoints becomes easier, and possibly opti-mal [38], the more equal the segments of the function become.
Parallelization

Checkpointing exploits separability of functions to decrease memory usage. Separability canalso be exploited to evaluate AD in parallel. Tapernade describes a vectorization technique [44]based on the idea that one can differentiate multiple points on the same function at once. Forinstance given data points p0, p1, p3 ∈ R3: The partial derivative of the x, y, z components of allpoints can be executed together (in forward mode). In practice, this allows building loops thatare data independent (since the points do not depend on each other), which then compute inparallel in a multithreaded execution context like OpenMP.PARAD introduces possibly the first work-efficient parallel reverse mode implementation [57].The paper describes the determinancy-race-free fork-join AD algorithm, the actual implemen-tation of that algorithm as well as proof for its polylogarithmic scaling.The current parallelization efforts mostly focus on run-time parallelization, which makes thema run-time optimization effort.
Sparsity exploitation

For large input and output sizes, problems exist, that produce Jacobi-Matrices that containnumerous zero values. Such matrices are also called sparse, since only some values contributeto the final derivative. Optimization techniques can exploit that fact by completely skipping thedifferentiation for such entries, and therefore speed-up the overall calculation time, as well asthe time needed to generate the related code.The challenge in this technique is detecting which entries are zero, before calculating the actualvalue. According to Gebremedhin et al. the proposed techniques can be split based on run-time and compile-time detection [33]. They identify two main run-time techniques: The sparse-
vector approach defers allocation of result vectors (of the Jacobi-Matrix) to the first-use of theresult. The bit-vector technique utilizes a pre-computation step, that treats the computation-graph as a OR-network. It performs a forward sweep tracking whether a result is in-use ornot.Compile-time techniques benefit from typically less strict time constrains to detect zero-values.Coleman et al. show that the problem can be mapped to graph (bi)-coloring [15]. They alsopoint out that the function segmentation mentioned in section 2.4.4 can also be exploited withrelatively dense matrices.Gebremedhin et al. provide an extensive survey of this idea and its application, as well aspractical difficulties [34].
Other optimizations

Further, more software engineering adjacent techniques are described in various implemen-tation papers. Memory management techniques like deferred / lazy allocation [87], cache and

23

2. Background and related work

streaming friendly ordering of data [41, 53] are a source of real world performance gain, asspecially for data intensive application like back-propagation in ML.
2.4.5. By transformation level

Operator overloading

Operator overloading describes the technique of redefining the operators in terms of AD asdescribed in section 2.4.3 & fig. 2.5. This lets a user of that feature define functions as theywould usually do, and the AD implementation takes care of applying the given technique ontop of a program.This method is popular with forward-mode AD implementation in operator-overloading capa-ble languages, since it is implemented comparatively easily in a self-contained library. A goodguide can be found in Forward-Mode Automatic Differentiation in Julia [97] which uses the dual-number technique. By defining a dual-number type, and a set of elementary operations, thelibrary facilitates competitive AD performance in an easily distributed package.Reverse mode AD is harder to implement, since following the reverse trace of that techniquesolely from within the host language can become challenging.The main draw-back of this method is its in-language nature. Since it redefines the implemen-tation of operators, the code quality depends on the input program. This does not allow animplementation to optimize based on properties like locality of data, redundant loads etc. In-stead it depends on either the interpreter, or a following compilation step to find, and applythose.Implementations are also language or rather library dependent.
As code transformation

Code transformation contains all techniques that either employ some form of meta-programming, for instance template-programming in C++ [46], or manual code-transformationby parsing code and rewriting it.Compared to operator-overloading, implementations are more involved, since not only arethe operands redefined, but some kind of understanding needs to be built for the programat hand. Either in the form of auxiliary structures for meta-programming, or in the form ofparsing source code, and building related intermediate representations. This also introducesthe challenge of keeping the AD implementation up-to-date with the language’s semantics.The advantage of this technique is its compiler-like standing in the tool chain: The implemen-tation can exploit context information of the program, can analyze data-flow, rewrite parts ofthe program etc. As specially when implementing reverse mode AD, this freedom allows forbetter optimized output, as argued by the Tapenade specification [44].A source-code independent implementation can be used with programs written in differentlanguages. This allows better reusability of the implemented strategies. For instance, Tape-nade is implemented for Fortran and C [44]. Another approach is not using a source languageat all. Aesara [21], which is a fork of Theano [106], lets a user build the computational graphdirectly via a Python application programming interface (API), then optimize it and compile itinto C, JAX [9], or the NUMBA [68] runtime.
Post code optimization transformation

A natural extension to source-transformation AD are post optimization AD compilers. Naumanet al. show that the already existing intermediate representations of compilers can be used toimplement AD within a Fortran compiler itself [92].

24

2. Background and related work

Language independent compiler frameworks like LLVM lent them self naturally to this strat-egy, since multiple language frontends, and machine backends, as well as a wealth of commonoptimizations are already provided. One such AD framework for LLVM is Enzyme [90]. It op-erates on the LLVM (LLVM)-IR, which allows it to emit code for numerous central processingunit (CPU) architectures as well as GPUs. Official and unofficial frontends include Fortran, Julia,Rust and C/C++.Recently multi-level IRs like MLIR or xDSL started acting on the observation that higher levelinformation could be exploited for more informed optimization. Often this means keeping do-
main specific information longer, before lowering into a less specialized/more general format.This idea is also applied to AD in LAGrad [94] for higher level MLIR. While Enzyme is also imple-mented for MLIR, its AD application happens at the comparatively low-level LLVM abstraction.LAGgrad in turn is applied to high level dialects like Tensor or Linalg. Peng et al. [94] show thatthis allows them to implement traditional AD optimization like tape-size-reduction efficientlyand achieve speedups of 4.2× in selected benchmarks compared to Enzyme, which is alreadyone of the fastest AD framework at the moment [89].The observation is, that on one hand postponing the differentiation step to post-code-optimization is beneficial, on the other hand lowering the step too far, is not the optimal strat-egy. The general observation that higher level information can assist in optimization for com-pilers holds true for AD as well.
2.4.6. Reviewing tool

There are several criteria under which we can group AD tools. We now chose all recent pro-fessional tools and compare them in each of those groups.
Selected AD tools

We include tools in active development past 2023, that have more than 100 confirmed users.The development is confirmed either by public code-forge8 commits, or via public researchresults. The user-base size confirmed either by public usage records (issues, commits, forksetc.) or via public citation count of related publications since 2023.Note that we can not guarantee that all tools under those criteria are included. The AD-toolspace is big and fragmented among different scientific fields. As specially the case of few de-
velopers, many users is hard to distinguish from few developers, few users from the outside.Refer to table A.1 for a list of all selected AD tools and a short description of each.
Interpretation

Table 2.2 collects all selected AD implementations into an overview in relation to the imple-mented mode (green), optimization (blue) and implementation level (red).Mode wise, we can see that most implementations chose to implement both, forward- andbackward-mode AD. There are only two outliers.ForwardDiff, as the name suggests, implements forward AD only. The benefit is a light ADlibrary compared to more sophisticated implementations. This is also in line with other alreadymentioned forward-only implementations.The second outlier is Tensorflow that only implements backward-mode. Since Tensorflow isexplicitly a ML framework and not a AD tool, this makes sense as well. Forward-mode is onlyuseful for small input sizes, which is almost never the case for ML problems.
8e.g. GitHub, GitLab etc.9Any of the marked features is implemented in one of the packages of https://juliadiff.org/10The tool lets you build the computational graph from a Python API.

25

2. Background and related work

Tool For
war

dM
ode

Dua
lNu

mb
ers

Bac
kwa

rdM
ode

Ret
api

ng
Che

ckp
oin

ting
Par

rale
liza

tion
Spa

rsit
yex

plo
itat

ion
Op

era
tor

Ove
rloa

din
g

Cod
eTr

ans
form

atio
n

Pos
t-O

pt.
Tra

nsf
orm

atio
n

ADOL-C [111] ■ ■ ■ ■ ■ ■

Aesara [21] ■ ■ ■ ■ ■ ■

AutoDiff [71] ■ ■ ■ △ ■ ▲

Autograd [78] ■ ■ ■

Casadi [2] ■ △ ■ ■ ■ ■

CLAD [109] ■ ■ ■ ■ ■

DiffSharp [6] ■ ■ ■

Enzyme [90] ■ ■ ■ △ ■ ■

ForwardDiff [97] ■ ■ ■ ■ ■

JuliaDiff9 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Minkowski Engine [12] ■ ■ ■ ■ ▲10
PyTensor [22] ■ ■ ■ ■ ■ ■

Tensorflow [80] ■ ■ ■ ■ ■ ■

Zygote [51] ■ ■ ■ ■ ■

Table 2.2.: AD tool feature comparison
■: Implemented, ▲: Partially implemented, △: Unknown

The most popular optimization is sparsity exploitation (10/14) followed by checkpointing (8/14)and parallelization (7/14). The least popular being retaping. This does not mean that retapingis unuseful. ML focused frameworks (which is the majority here) often need to optimize formemory usage. Retaping, which improves runtime by using more memory, is not applicable inthat case.
There is no clear winner for the transformation level.An interesting observation is, that the optimization count on average increases when loweringthe implementation level. While operator overloading implementations have on average 1.5implemented optimizations, code-transformation based implementations increase that to 2.7on average. Post-optimization implementations lead with 3 on average. The hypothesis is, thatlower transformation level benefit from more accessible data-flow information and transfor-mation capabilities, which are needed for powerful optimizations.

26

2. Background and related work

2.4.7. The case for domain specific compilers

When considering domain specific compilers in the context of AD, we can relate two points. Thefirst one is, that AD libraries and tools are often domain specific them self. This is usually theway optimizations are chosen, and user interaction is modelled. Considering for instance JAX,which focuses on machine learning, the API is Python, which is widespread in that space, and itfocuses manly on backward-mode, with memory conscious optimization, parallel computationand sparsity exploitation.In contrast, DNAD, which originates in computer physics focuses on forward-mode, and usesFortran. Both choices make sense, if you encounter small input, big output problems and al-ready use Fortran code bases, which are wide spread in that space as well.The compiler-based AD approach in LAGrad [94] shows that an implementation can exploitdomain specific knowledge at that level as well. Coming back to fsphere from eq. (2.3), the
expansion of the ||p|| term to √

p2x + p2y + p2z transformed one operation into nine, in order to
arrive at an elementary-operation-only compute graph.A domain specific compiler might be able to implement the ||p|| operation as an elementary-operation. This would effectively shrink the compute graph and possibly allow better deriva-tives for that operation.Domain specific differentiating compilers can exploit their focus by implementing a suitableinterface for the users of AD, use (only) fitting optimizations and implement a customized setof elementary operations.
2.4.8. Distance fields in AD

Distance fields, or scalar fields represent n − Input, 1 − Output problems, where n is thedimensionality of the distance field. For a 3-Dimensional field we have three inputs (x, y, z),and one output, the (signed) distance. If those are the only variables the differentiation isinterested in, the previous research suggests that forward-mode is powerful enough, since 3could be considered a small amount of inputs. With that technique properties of the spatialparameter can be analyzed, like the normal-vector, or the curvature property. Section 2.2shows however, that more sophisticated applications, like distance field reconstruction needaccess to not just the spatial parameter’s derivative, but properties of the encoded primitivesas well.For instance, imagine we want to fit a sphere to some collision problem, the solver might haveto change radius of fsphere (in eq. (2.4)), in order to find a result. The naive search would justchange radius until it finds a result, which potentially takes long, or never ends. An informedsearch however, could employ gradient descent over the parameter radius to find a resultfaster.Transferring this idea to more complex models, the input space becomes much larger thanjust the spatial parameter. In that case backward-mode AD becomes more viable.
Another consideration are higher order derivatives. Referencing the small-input problem frombefore, the first derivative of a signed distance function in 3-dimensions yields three partialderivatives (see section 2.4.2). Each of those needs to be differentiated again, to arrive at thesecond partial derivative. A naive implementation could implement the second derivative astwo applications of the AD pass to the same expression. There are also specialized imple-mentations for forward- [29] and backward-mode [70] [42] as well as mixed techniques [104].Depending on the intended use case those optimizations might make sense, but are not gen-eral enough to make a general recommendation.

27

3. Methodology
Chapter 2 explores applications of AD for DFs. An observation in other AD implementationsis their domain specific choices. The choice of implemented modes, optimization, and theimplementation level all depend on the application domain. We now motivate our domainspecific considerations, informed by the prior research.We then introduce Vola’s implementation and how the commonly used structures translateinto that environment.We close with the chosen correctness criteria for testing as well as performance criteria forcomparison to other implementations.The implementation of the chosen strategies is discussed in chapter 4.

3.1. Domain specific considerations

The implementation is realized within a domain specific optimizing compiler, Vola’s optimizer.The language’s objective is generating machine executable code, that represents signed dis-tance functions as well as adjacent, user defined properties. The Vola-DSL lets humans definesuch functions. Vola’s compiler toolchain currently focuses on GPU executable code.Vola’s compiler has relaxed precision rules in favor of higher flexibility while defining signed dis-tance functions and while optimizing high-level code. This applies to floating-point operationsas well as the reinterpretation of high-level operations.Control-flow is structured and deterministic. This means only bounded loops, and no infinite-recursion of functions.
3.1.1. Forward vs. Backward mode

Both modes are good at two distinct input-output pattern. Forward mode usually requires lessmemory, but is only efficient for Few Inputs, Many Outputs cases. Backward-mode in contrast ismore effective for Many Inputs, Few Outputs problems. Since our domain contains all distancefunctions, which includes highly complex, highly parameterized functions, we can’t rule out the
Many Inputs case.In practice any use case that does not use many inputs fits the forward-mode. This includessimple applications like a first-derivative of a SDF at any given point in a 3D-space. Therefore,for optimally reasons the Few Inputs case, where forward-mode fits best, can’t be ruled out aswell.We therefore come to the same conclusion as most (cf. table 2.2) sophisticated AD-tools, thatboth modes need to be implemented to arrive at an efficient implementation.

28

3. Methodology

In practice the tool needs to decide which mode fits best for a given problem. The main crite-ria are the input and output size of a given function. Deciding at which point few changes to
many is not a simple task. We propose counting the number of operations and letting thoseinfluence the heuristics. Each operation introduces memory overhead for backwards-modeAD1. The heuristic should approximate the point, at which repeated backward-mode AD withintermediate values outweighs repeated forward-mode application without intermediate val-ues.In practice the heuristic could be informed by profiling representative use-cases and encodingthe result into a simpler model.This also opens up the possibility for self-optimizing strategies, possibility based on MLlike [107] or [88].
3.1.2. Implementation Level

Section 2.4.5 shows that the compiler level is a promising level for AD implementations. Thereis an optimal level for that implementation somewhere between high-level, domain specificdialects and low-level, hardware-like dialects. Vola’s compiler toolchain already encodes themultilevel dialect approach in its optimizer. The AD implementation can therefore be imple-mented on an algebraic level, that is already present. This allows domain specific exploita-tion, like cross-product derivatives, that need to have notions of vectors and a cross-product-operation to be present. The chosen IR also provides a proven framework for data-flow andcontrol-flow analysis that is needed to facilitate the implementation in chapter 4.
3.1.3. Optimizations

The implementation does not use any of the optimizations of section 2.4.4. It exploits com-piler native optimizations, like dead-code-elimination, to reduce code size and constant fold-ing, which eliminate statically known operations. Those optimizations can be applied beforethe differentiation pass, to reduce the amount of operations in the computation graph, andafterward, to optimize the derivative calculation itself.The implementation can also make use of mixed-mode strategies. Activity-analysis has to findvalues that are related to any x for a AD pass ∂f
∂x . We can exploit this information to not justimplement the chain rule, but the product-rule, constant-factor-rule and others. This shortensthe generated operation graph for derivatives.

3.1.4. Elementary operations

The choice of elementary operations has a big impact on the AD-implementation’s complexityand computational graph complexity (e.g. eq. (2.3) & eq. (2.4)).The optimizing compiler’s high-level dialects encode common arithmetic operations as wellas vector-arithmetic operations and common programming related expressions (eg. linearinterpolation2). We chose to keep all high level operation that have a defined derivative in theelementary operation set. Some higher level operations can be replaced with an equivalentgraph of multiple defined operations (again, see eq. (2.3) being rewritten as eq. (2.4)).The compiler also contains non-arithmetic operation, like indexing into a vector. Those opera-tions are transparent to the AD transformation. They are used as-is without changing them atall. If needed, arguments to those operations are transformed, however.

1if no memory optimizations like checkpointing is implemented.2Also known as lerp, or mix.

29

3. Methodology

−3 −2 −1 1 2 3

1

2

3

x

y abs(x)

smooth abs(x)

Figure 3.1.: Smooth abs approximation in XAD [105]
3.1.5. Differentiability

A so far unmentioned practical problem are non-differential functions. In practice, computercode is rarely fully differentiable. Things like control flow can, but often don’t lead to differ-entiable functions. Other expressions like abs, which returns the positive of any value, is onlydifferentiable in a certain range. In this case, abs is differential for non-zero values.The question arises, how non-differentiable expressions are handled in our case. We intro-duce two compiler modes, a mathematical correct mode, that aborts differentiation when itencounters a non-differentiable expressions, and a practical mode, that applies possibly nonequality-preserving translations to the expression, to make it differentiable.The resolution idea to this problem stems from code-transformation tools. A canonicalizationpass translates non-differentiable functions to differentiable approximations. For instance,
abs is approximated around3 0.0 by a differentiable function in fig. 3.1. This approximation ischosen in a way that makes the whole function differentiable.
A second resolution strategy is explicitly catching non-differentiable cases in the canonicaliza-tion. The x = 0.0 case in fig. 3.1 could also be handled by an explicit branch, that emits aconstant 0.0 for the derivative.
The AD-implementaiton is control flow (i.e. branches and loops) blind. For a branch, only thetaken branch’s derivative is calculated.Loops in the DSL have known, static bounds4. They are treated as sequential re-executionof the same code. The derivative of a loop is simply the derivative of the loop unrolled loop-
iteration-count times. Better solutions to the problem, that do not need to unroll loops ex-ist [51]. This would lead to drastically less code, especially for high iteration counts.Control flow always aborts in the mathematical correct AD mode. Otherwise, the compiler wouldhave to include proofing capabilities for control flow boundaries. Such a system would haveto prove that the boundary of two branches (or loop iteration pairs) is in fact continues.The practical mode can employ approximation at control flow boundaries [13]. The idea is,that control flow is treated as a composition of two differentiable functions. The approxi-mation smoothly interpolates both functions at the control-flow boundary5. This leads to adifferentiable approximate expression.

3In this case the approximation region is c = 1 to illustrate. In practice this can be chosen smaller.4In plain words, we know, at compile time, how often a loop is executed.5Given an if-statement that chooses a path A for x < 0 otherwise it chooses path B. The approximation caninterpolate the values of A and B for x = 0± c.

30

3. Methodology

3.2. Implementation environment

The AD feature needs to integrate with an already existing language and compiler. While notstrictly part of the AD technique itself, the syntax used to describe differentiation is the onlycontact surface from a user to the compiler feature. The following discusses how we interfacefrom the users (syntax) perspective down to the compiler’s IR description of a differentiation.
3.2.1. Syntax

Users access AD capabilities of languages either through bespoke functions, or sometimesspecial syntax in DSLs with AD.A common syntax is a function-call like pattern with three parts (cf. fig. 3.2): The function’s namedetermines the AD mode, the second, and third part signal the differentiated expression andwith respect to which6 parameter differentiation is done.
/ / forward model e t r e s u l t = forward grad ient (* expression * , *wrt −argument *) ;

Figure 3.2.: Function-call style syntax
This kind of syntax has the advantage of being within most languages. For operator overloadingor source transformation implementations, the function call serves as the AD entry point. Fromhere, either the operators of *expression* can be modified with respect to *wrt-argument*,or a source transformation can start. Some implementations allow *wrt-argument* to beof non-scalar type. This effectively makes the differentiation either directional derivative or avector gradient, depending on the signature of *expression* and *wrt-argument*.
DSLs can use special syntax to signal the creation of an expression’s derivative. In theory theappropriate mathematical notation like ∂f

∂x , f ′(x), ∇f can be implemented. In practice, thoseare symbols that are not present on most keyboards, which makes this rather unpractical. If anone text-notation (i.e. node graphs) or a integrated development environment (IDE) is alreadygiven to express the DSL hover, this might be viable.
Vola takes parts of both (cf. fig. 3.3). Since the compiler should use a heuristic to decide forforward or backward mode, the mode is not signaled by the syntax. Instead, a diff functioncall signals the AD entry-point.

csg sphere = Sphere(1.0);
let at = [1,2,3];
let result = diff(eval sphere.Sdf3d(at), at);

Figure 3.3.: Derivative of a sphere in Vola
The differentiated parameter can either be a variable, or expression. The *wrt-argument* canbe either a scalar or vector parameter. The result type of the derivative is calculated from bothparameters in accordance with the rules established in section 2.4.2. This means taking thederivative of a scalar function returns a scalar derivative. Taking the derivative of scalar fieldreturns a vector of the field’s dimensionality, etc.

6With respect to (WRT)

31

3. Methodology

3.2.2. Integration into the IR

The central data structure to both AD modes is the computation graph. This is a graph with
elementary operation as its nodes, and edges from each operand’s value producer. This isequivalent to the data dependency graph. The IR employed by Vola’s optimizer is the data-flow centric RVSDG. Generating the computational graph of any expression in this graph is assimple as following all value-dependency edges of an entry-node7.Vola therefore does not have to build a computational graph for the AD implementation, sincethat is already established within the IR. The AD specific implementation focus on the alreadyestablished canonicalization pass, the actual AD-mode specific transformation of the graphas well as post-transformation optimization. The latter being standard none-AD specific opti-mizations.
3.2.3. Code generation concerns

Vola’s focus is GPU executed graphics (in contrast to GPU executed compute) code. A CPUtargeting code generation backend exists to verify correctness against other AD implementa-tions, as well as making performance comparisons possible. The implementation would beconstraint to other GPU capable AD implementations otherwise.

3.3. Testing the implementation

3.3.1. Correctness

The implementation needs to be correct on a mathematical layer as well as on an algorith-mic one. This means in practice that the implementation needs to identify non-differentiableexpressions correctly, and transform differentiable expressions reliably into the result.We build a test framework that uses Enzyme [90] to facilitate differential testing. The idea is touse the same test-code on both systems, Enzyme and Vola. The emitted code is then executedand checked for differences.We can’t compare the emitted code, since both systems transform and optimize code differ-ently.Differential testing does not allow us to catch all errors. Floating point error accumulation isnot considered, for instance. Nevertheless, it allows the system to catch basic differentiationmistakes.
3.3.2. Performance

We test performance similarly to correctness in relation to Enzyme. Shared test cases, that arecompiled by both compilers, are executed on several data-points. Compile-time, runtime, andcode-size for both are measured.We split the compile-time into two measurements, overall compile-time, and time taken for AD.This lets us identify whether differences in the compile-time stem from the differentiation pass,or other unrelated compilation details.

7Ignoring inter-procedural nodes, like apply-nodes, and intra-procedural nodes like θ-nodes. Integrating thoseinto the computational graph is simple as well.

32

4. Implementation
The implementation description follows the natural compilation flow. We start by describingthe initial compiler state, in which the AD takes place. General preparation of the RVSDG isfollowed by analysis of partaking values in the derivative (green in fig. 4.1). Next, the actualAD algorithm is applied to the graph, to generate the derivative value of an expression withrespect to a singular value (blue in fig. 4.1). In a final step, the partial derivatives are combinedinto the final value as defined by section 2.4.2 (red in fig. 4.1).The described implementation lives in the autodiff module of the vola-opt crate of the
vola [85] repository.

next derivative

Linearization Canonicalization Activity or Forward-Mode

Backward-Mode

end Post Derivative

Figure 4.1.: Differentiation pipeline overview

4.1. Preparation

We show the AD calculation based on the already known sphere example from section 2.4.3.We start out with the Vola code in fig. 4.2a. After the compiler has finished all pre-AD work, weend up with the graph in fig. 4.2b. The orange node declares the entry-point to the AD pass.The green nodes are the expression that is being differentiated.
The entrypoint for the AD implementation is Optimizer::dispatch˙autodiff. The first actionis to find all nodes of the AutoDiff dialect, in our case the singular green AutoDiff node.Before building the derivative of each of the discovered nodes, we build the topological orderof the derivatives. This lets us solve the higher-order derivative problem. The idea is to firstsolve inner derivatives, which is equal to being earlier in the topological order in the RVSDG. Thiseffectively lets the user write an expression diff(diff(expr, x), y), which is the secondderivative of expr with respect to x and y.

33

4. Implementation

entity Sphere(rad: s);
concept Sdf: vec3 -> s;
concept Gradient: vec3 -> vec3;

impl Sphere for Sdf(at){
 length(at) - rad
}

operation MyAdOp();
impl MyAdOp<sub> for Gradient(at){
 let sd = eval sub.Sdf(at);
 diff(sd, at)
}

export mysdf(at: vec3){
 csg sphere = MyAdOp(){
 Sphere(1.0)
 };
 eval sphere.Gradient(at)
}

(a) Vola code (b) RVSDG immediately before starting AD process.
Figure 4.2.: Compiler state before sphere differentiation.

The next step is to dispatch the actual derivative calculation, in that order.
In the future this would be the location, in which a heuristic decides which AD implementationto use, based on the expression, and context information. In practice, we currently only havea forward implementation, we therefore always dispatch the same algorithm.
4.1.1. Linearization

In forward-mode we have a practical problem at this point: diff can be used with respect toany expression, including expressions that are vector or matrix valued. Recall that section 2.4.3established, that forward-mode creates the derivative of an expression with respect to onescalar-valued argument. We fix that issue by linearization of the AD entrypoint. Practically thistransforms an entrypoint let d = diff(expr, [a, b, c]);1 into let d = [diff(expr,
a), diff(expr, b), diff(expr, c)];.Note that the type of d in this case still depends on expr’s type.The process can be observed in fig. 4.3. Note how the graph now has three (yellow) AutoDiffnodes, each connected to the original expression, as well as one index (red) into the region’sargument.
4.1.2. Canonicalization

Next we canonicalize the dependencies of the to-be-differentiated expression as described inchapter 2 and section 2.4.3. We again traverse dependencies of the expression in topologi-cal order. For each node, we determine whether the node must be canonicalized. If that isthe case, based on the before established approximation criterion the node is either trans-formed into an equivalent, differentiable expression, a differentiable approximate expression,or returns an error.
1Where a, b, c, are scalar-valued, and the with-respect-to argument is vector-valued in consequence.

34

4. Implementation

Figure 4.3.: AD entrypoint split into three.
An advantage of this approach is, that we only have to canonicalize an expression once. Soeven if we had to linearize the AD node before, the canonicalization expense does not grow.In fact, even if another AD node later on uses parts of the same expression, it won’t have tore-canonicalize the sub-expression.A current disadvantage is, that any approximation that is introduced into the expression willalso apply to non-differentiated values that use that expression. However, this also makes theresult more predictable, since not only is the derivative based on the approximation, but thevalue itself too.In our example case (cf. fig. 4.4) only the Length node must be canonicalized. In this case, into√

x2 + y2 + z2, or in other words, the standard Euclidean distance formula. The green nodesmark that expression.
Control-flow

This pass is also the pass that handles control-flow. Internally, the RVSDGs’s control-flow nodes(γ- / θ- nodes) are handled the same way as any other node that needs to be canonicalized.We currently handle branches by making them transparent to the differentiation. At runtimewe use the same decision value to choose a branch. Instead of returning f(x) however, wereturn ∂f
∂ .For loops, we simply unroll the loop into one big expression. This is at the expense of codesize, but keeps the implementation simple. Otherwise, we would have to implement somekind of intermediate value analysis. This is a well explored field [48, 51]. This approach po-tentially introduces redundant AD workload. Given an expression e that is within a loop, butcould be factored out2, e will be differentiated iteration-count-times. This can be mitigated byeither pulling out such expressions first, or by unifying common-expressions after unrolling,but before differentiating.We can use unrolling because Vola’s language only allow static loop bounds. This was decidedbefore, because the language first focused on real-time rendering code for GPUs. In thatcontext unbound loops, and big loops are unwanted, since they can lead to unanticipatedlong runtime of a kernel, or even GPU timeouts.

2meaning a loop-invariant expression

35

4. Implementation

Figure 4.4.: Canonicalized expression

4.2. Activity analysis

We now consider the expression connected to any AutoDiff node in AD-canonical form. Thenext step of the algorithm identifies so-called active values. This is a terminology we borrowfrom Enzyme[90]. We consider a node in the graph active if it can propagate a differentialvalue3. In other words, if we are building the derivative for x, any node that could somehowcontain x, or a value that is impacted by x is considered active.It is to note that our analysis can be simpler than Enzyme’s, since we do not have a concept of
memory or pointers. We can always reliably infer what values are connected to x.Coming back to the example, recall that we split the AD with respect to at in fig. 4.2a into threein fig. 4.3, which leaves us with three AutoDiff nodes, one for at.x, one for at.y and the thirdfor at.z. In the figures x is accessed via CIndex: 0. y/z are at index 1 & 2 respectively.
The first part of the activity analysis is a backward search from the wrt-argument, so the secondinput to a AutoDiff node. It traces that dependency graph until it ends at any argument tothe surrounding region, or a value producing node4. This allows us for instance to include avector v⃗ if that vector contains x.We also record which component in that vector contains x. This way, if any other node uses xat some other point in the graph, we know that this value is active as well. This process is thesame for all shapes of algebraic type system in the DSL.

3The ∂x in ∂f
∂x4Meaning anything that calculates something. In practice we can just check if a node is of the algebraic dialect.

36

4. Implementation

The system now has a set of initial active nodes and ports in the dependency-graph of our
AutoDiff node. Later, whenever activity needs to be considered, the algorithm can ask thatsystem whether a node or output-port is active. It can then utilize the just build initial activitystate, as well as cached activity state, to derive the asked-for activeness. In other words, thesystem can lazily update each node’s activity once it is needed. fig. 4.5 highlights active nodesand ports in the example graph. The initially active nodes are highlighted in orange, while thederived nodes are highlighted in green. All the colored nodes are considered active.Note how the CIndex: 1 and CIndex: 2 nodes are not highlighted. While they do index intothe at argument, they do not refer to at’s x coordinate, but y/z.

Figure 4.5.: Node activity in AD dependencies
In practice additional care needs to be given to nodes with sub-regions, for example derivativeswithin a loop. The same tracing idea applies, but across region boundaries.The initial tracing logic as well as the lazy exploration resides in the activity module.

4.3. Generating derivatives

Both modes, forward & backward, rely on the ability to set up a node f ′(x) for any f(x) theyencounter. For that reason we implement that node creation outside of the mode’s logic.
Simple nodes and ports

Most values in our graph are simple nodes of the algebraic dialect. We can decide whetherthey are active or not for each. If the AD algorithm request the derivative of a non-active

37

4. Implementation

node, it emits a zero value of the corresponding type. A 3-component-vector typed node wouldtherefore generate a 3-component-vector of zeros.If the derivative of something that contains x is requested, a correspondingly typed value iscreated, where any element that was x is 1.0, and any non-x element is 0.0. This behaviororiginates from the application derivative rule for the pure differential value shown in fig. 4.6.

let f(x) = x

then
∂f

∂x
= 1

let f(x, y, z) =


x

y

z



then
∂f

∂x
=


1

0

0


Figure 4.6.: Pure differential value creation

For any active value that does not contain the pure value x, we apply the corresponding deriva-tive rule. At this point we can leverage the activity information to not only implement the chainrule, but quotient-, product-, scalar-rule etc. By adding the type system to that idea, we caneven define the derivative for vector functions like dot-product and cross-product. We there-fore don’t have to break them apart, which lets us save operations for our derivative.It is to note that in principle only the chain-rule and the derivative of each elementary opera-tion5 need to be defined. Employing those additional rules only allow us to keep the derivative’scomputational graph smaller.
Branches

For branches, we duplicate the γ-node6, which contains both branches. We then import theactivity state of each entry-variable of the γ-node into the region. Now we can build the deriva-tive of each exit-variable within that region based on the imported activity state. This effectivelycreates a new gamma node that outputs the derivative of an exit variable based on the runtimebranch criterion.This makes the γ-node invisible to the derivative, since it does not contribute to the derivative. Ifboth branches are not continues in their initial form, then the discontinuity is carried over intothe derivative value. We discussed interpolation at the bounds of control-flow nodes (gammaand theta) in section 3.1.5. This strategy is currently not implemented though.
Inter-procedural nodes

Inter-procedural nodes, usually function calls, are handled similarly to branches. We copy the
λ-node7, import the activity state that is connected to the caller into that copy, and executethe derivative creation on that node’s body.The DSL does not permit recursive function calls. We can therefore be sure that the number ofcopied λ-nodes is bound. We currently don’t account for redundant copies. For instance, givena function g(x) that is differentiated with respect to x twice, we don’t reuse the already created

5Any node that can occur in a canonicalized graph in our case.6γ-nodes can be understood in principle as a switch-case node. For more detail see the RVSDG paper[96] andsection 1.3.3.7λ-notes can be understood as functions. For more detail, see the RVSDG paper[96].

38

4. Implementation

g′(x). To be able to directly reuse the function, we would have to make sure, that the activity forboth differentiation cases is exactly the same at the call-site. Later common-node-eliminationmight take care of reuse regardless.

4.4. Forward mode

The forward mode follows the idea described in section 2.4.3 closely. It iterates the derivativeexpression’s nodes in topological order. Non-active nodes are ignored. For each active node,we generate the derivative as described in section 4.3. Each node can request sub-expressionderivatives. That allows them for instance to apply the chain rule. Since traversal takes placein topological order, the derivative of any sub-expression will always be present before theexpression itself is handled. In math terms, given f(g(x)), g(x) will always be handled (andemit g′(x)), before (f(g(x)))′ is requested. Building (f(g(x)))′ = f ′(g(x)) ∗ g′(x) therefore onlyneeds to generate f ′(g(x)) and hook it up accordingly.
Coming back to the example in fig. 4.5, the algorithm traverses all green nodes from the topto the bottom. The CIndex: 0 node differentiates to 1.The multiplication uses the product rule, since both inputs are active. The rule (u ∗ v)′ =
u′ ∗ v + u ∗ v′ applied to u = x & v = x, u′ = 1 & v′ = 1 resolves to 1 ∗ x+ x ∗ 1 = 2x.In the end the graph look like fig. 4.7. The green nodes are newly added nodes to the graph,while the red nodes are reused nodes that partake in the derivative calculation.Note that this is the raw post-derivative graph. Many of those nodes could be folded, forinstance the multiplication by 1 at the top, or the subtraction of 0 at the bottom.

4.5. Post derivative

For forward mode, the process is repeated for the remaining AutoDiff nodes. Afterwards itis advisable to run cleanup passes like dead-node-elimination, common-node-elimination andconstant folding. It can happen that the original expression is fully transformed, which leavesit dead. We already saw that the simple application of derivative rules creates operations thatcan be reduced, like multiplication by one. The reason for that lies in the initialization of activevalues to 1 and passive values to 0. Both values are identity values to multiplicative and additiveoperations, respectively.In our case, the unoptimized graph after AD has 56 nodes, while the cleaned final graph has20 nodes and can be observed in fig. 4.8. Again, the green nodes are nodes added by theAD pass, while the red nodes are part of the original expression. Note that we now treat thecanonicalized expression as original, since it calculates the original value, not the derivative.
The implementation has an experimental Egg [112] based rewriting system that handles theformer described optimization of the graph. It can be found on the
feature-egg-expr-rewrite branch [86] in the optimizer’s ego pass. It serializes parts of aregion’s result into Egg’s SymbolLang. A ConstantFold analysis uses pre-defined rules to applyfolding operations. The final extraction step currently just optimizes for smallest AST-size.If any region argument, or control-flow-depending value is part of an expression, it gets seri-alized in a way, that the analysis can not change it. That way the e-graph can use such values,but is not allowed to transform them.It was already shown, that e-graph can be utilized better with RVSDGs in Optir [101] andEggcc [93]. This is also the reason that feature is not yet merged. We currently only opti-mize expressions (hence the name of the branch), not the whole graph. We found that the
typedness of our graphs does not translate well to the standard usage of Egg. E.g. we have

39

4. Implementation

Figure 4.7.: Graph after first forward-mode application
no notion of a neutral-element. Reducing multiplication-by-one must be handeled with onerule for each data-type that supports multiplication, which does not scale well. A custom Egg-Language8, and possibly rule description DSL has to be found, and implement, that supportscontext-informed rules.

4.6. Future work

There are several improvements that could be made to the implementation. Currently, onlyalgebraic nodes can be differentiated. However, there also exist strategies for boolean differ-entials. Those could be used to increase the emitted differential quality. Similarly, additionaldomain specific types, like quaternions to represent rotations (instead of rotation matrices)would increase the differential quality as well, since the derivative is defined for those as well.
The rewrite logic is currently handwritten in the compiler. This process is error-prone andhard to debug. An improvement over this system would be a small, easy to read rewriting DSL.

8See Egg’s language definition

40

4. Implementation

Figure 4.8.: Final graph after AD and optimization
Cranelift showed [26] that such a DSL can be used with equality saturation based optimizerslike Egg [112] or Egglog [116] to implement a performant, easy to manage rewriting system.This is not to be confused with the Egg-based optimizing that is already implemented. TheE-Graph functions as a common structure for two different tasks, once for AST-size-reduction,and once for graph-transformation.
Whenever an approximation uses a constant value, the value is currently set in the compiler’sconfiguration. Consider the approximation region in fig. 3.1. Sizing that region correctly de-pends on the context that function is used in. In the best case scenario, the compiler woulduse sensible defaults (as it currently does), but expose a way for the user to set the approxima-tion region, whenever those defaults fail. It is impractical to set such a region on a per-operationbasis. My proposal is an abstract sensitivity value that is applied to an expression. This wouldact as a multiplier to any default approximation value that is encountered while canonicalizing.The rational is, that users do not necessarily understand what some abstract approximation
value does to a given CSG. Usually they would want to in-/ decrease precision because theapproximation fails somewhere. Therefore, just dialing up or dialing down approximation pre-cision would lie on a similar level of understanding.

41

5. Evaluation
We evaluate the automatic differentiation under four different aspects:First, we compare its results to the existing differentiation of Enzyme [90].We then benchmark our compiler against Enzyme’s Rust integration. The generated code isalso compared in its runtime performance.Afterwards we change the topic to the applications of the compiler feature by showing enabledusage patterns in the DSL that were not possible before. We also classify the usage patternwith regard to other SDF usage patterns, to illustrate the gained usability advantage.In the end, we combine both topics into four use cases that showcase different applications ofthe derivative feature, ranging from shading of surfaces to procedural animation of objects.

5.1. Correctness

The implementation is tested for correctness by calculating the same differentiated distancefunction in Enzyme and Vola. Our implementation generates a web assembly (WASM) modulefrom the Vola code, and a dynamic library from the Rust based, Enzyme differentiated code.The differential tester then loads the WASM module into the wasmtime [1] runtime, and dy-namically links the Rust library as well.It generates fuzzing points (by default 1000) in 3D-Space. For each point, it is tested whetherthe Rust-Enzyme generated result is the same as the Vola generated result. The test run canbe configured for a permitted deviation. Since both implementations generate different code,different floating-point impressions can occur. By default, we use 0.01. Refer to the vola-testrepository[84] for implementation details. Note that the deviation is chosen relative to thetested scenario. The occurring error is fundamentally influenced by the function that is beingcompared.There are two caveats that make that system less useful than anticipated. The first being, thatRust’s Enzyme implementation can only differentiate unwrapped mathematical, expression-like code. While trying to build a close-to-Vola type system in Rust, several patterns were en-countered, that crashed Enzyme. You can’t use dynamic-dispatch / function pointers, so build-ing a CSG-Tree in Rust is not possible. Using closures/higher-order-functions to representoperations and entities, as Vola does it, is also not possible. In the end, we settled to hand-unwrapping the distance function into simple mathematical expressions, which worked.A second caveat is a miss compilation problem for debug builds with Enzyme. It was firstencountered while testing differentiation of a union operator via Enzyme. The idea of theunion operator is simple: Given two SDFs, take the smaller of both values. In practice, this is a
min operation on both values. While testing both implementations, we found that there were

42

5. Evaluation

big differences for a specific sector in the 3D space, all other sectors had comparable results.At first, Vola’s implementation was suspected to be at fault. We could reduce the issue to theunion of two spheres, which can still be hand derived. It turned out that Enzyme was at fault.After further testing, we found, that Enzyme outputs the correct value in the release profile. TheEnzyme user-group was asked about this issue [82]. An answer in the Enzyme-project’s issuetracker [98] suggests that this might be related to an overall problem of Enzyme’s handling ofruntime activity, inlining and composite data types.To have a second source of truth, an additional differential view was implemented in the test-renderer [83]. The differential view shows the difference of the AD generated derivative com-pared to the numerical derivative. The view does not capture subtle differences, but is good atsignaling big, regional differences. This let us debug and correct a bug in the derivative creationof matrix-vector multiplication.
Finally, we could verify correctness for mathematical expressions using Enzyme and the differ-ential view of the test renderer for a wide variety of use-cases. This includes vector-operationslike cross and dot product, matrix operations, widely used scalar operations known from othershader languages and control-flow.

5.2. Benchmarking

We compare the performance of Vola’s forward-mode to Enzyme’s forward-mode. The bench-marking environment is described in section 3.3.2. The AD timings are taken for Vola’s ADentrypoint AutoDiff::dispatch˙ad and Enzyme’s LlvmCodegenBackend::autodiff. In bothcases, the differentiation happens in isolation to other compilation passes. We only measurethe actual differentiation passes, as earlier and later optimization passes do not exclusivelywork on differential code in both cases.We measure runtime CPU characteristics on a AMD Ryzen 9 5900x on (Arch) Linux. We isolateone full core for our benchmark process via the nohz-full kernel parameter. The runtimetask is pinned to one core’s threads via taskset1.The test-runtime introduces an overhead to the overall timing. Since the same runtime is usedfor both test cases (Vola & Enzyme generated code), the timings are comparable.We profile both tools in four test cases. The derivative of a sphere, the hard and soft union ofa sphere and a translated box, and finally a blob scenario that assembles a grid of spheres aswell as four hand placed spheres at the coordinate system’s center.We repeat each test three times to verify comparable runtime. Table 5.1 presents the averageof all measurements. For all benchmark data, see table A.3.
Compile-time AD compile Runtime Codesize

Enzyme Vola Enzyme Vola Enzyme Vola Enyme Vola
Sphere 5.50s 207ms 2.50s 1.7ms 53µs 60µs 370.6kb 50.4kb
Union-Hard 5.62s 222ms 2.54s 1.8ms 57µs 60µs 371.1kb 67.6kb
Union-Soft 5.65s 225ms 2.54s 2.8ms 58µs 58µs 371.2kb 70.6kb
Blob 5.63s 225ms 2.61s 4.0ms 60µs 62µs 371.8kb 79.9kb

Table 5.1.: Enzyme/Vola benchmarks
The benchmarking shows a far shorter compile-time (for both, the overall compile time and

1Following this profiling guide: https://manuel.bernhardt.io/posts/2023-11-16-core-pinning/

43

5. Evaluation

the AD pass) for Vola in all four scenarios. The runtime is comparable, but favors the Enzymegenerated code. The difference in runtime is probably rooted in the use of Cranelift to translatethe Vola generated WASM module to x86.The comparatively long compile time of Rust/Enzyme is explained by the use of LLVM’s optimiz-ing passes before and after differentiation. Both implementations need type information (andother auxiliary data) to successfully differentiate the given code. Given the simplest AD case,of just a sphere, 97% of the AD compile-time are spent in LLVMRustOptimize. The applicationof the forward-mode pass is less than 0.1%. For the slightly bigger blob scenario, 0.2% of theAD compile-time is spent in the forward-mode pass.Enzyme probably scales better than Vola to more complicated, bigger scenarios. At whichpoint this case needs to be determined.

5.3. Usability advantage

We implement differentiation as a first class concept in Vola’s optimizing compiler. This grantsthe ability to differentiate any value of a program. This is a higher degree of freedom comparedto general purpose shading languages like OpenGL shading language (GLSL) and high levelshading language (HLSL). Those have intrinsic functions2 to retrieve the derivative of an inputto a shader. However, they do not possess the ability to build the derivative for any value.Slang, a newer shading language, posses the ability to declare differential functions. It needsmanual declaration of those by hand though, and requires manual handling of the derivativevalues3. Differentiability is handled via an interface concept, which needs to be implemented forany differentiable value. This is appropriate for a more general language with AD capabilities. Itcan be argued that a DSL that does not need any additional work to make values differentiableis more convenient to use in that specific case.Compared to Enzyme, our implementation allows using derivatives within derivatives, withoutexplicit order handling [3]. We also handle derivative calculation as a fundamental part of ourcompiler toolchain. Anything that can be derived is handled. All other cases are signaled asan error to the user. The current Rust implementation, requires careful handling of derivativeexpressions and input/output data [3].
For our differential testing (cf. section 5.1) to work, we had to severely lower the abstractionlevel of the Rust implementation. The initial idea was, to build a CSG tree as a tree of dynam-ically dispatched trait-objects [23]. A simplified Vola CSG could have looked like fig. 5.1a. Thisdoes not permit a node of the tree to take the derivative of its children (which Vola allows), butlets us represent the fundamental CSG-tree to DF idea of Vola in Rust.In practice, however, Enzyme can not build derivatives over trait objects. We also tried to rep-resent the entities and operations via closures/higher-order functions and similar constructs,which did not work as well. In the end, we hand-unfolded each use-case in a simple sequenceof operations, which are derivable (cf. fig. 5.1b).This allows us to use the derivative not just for one use case, but any that involves derivatives.We can use the derivative of the SDF to calculate normal vectors (section 5.4.2), drive anima-tions (section 5.4.3) based on an animation curve’s derivative, shading (section 5.4.4) based ona second order derivative, or optimize a rendering algorithm (section 5.4.1).

2For instance dxdy in GLSL.3see the DifferentialPair, and the overall AD user guide for Slang.

44

5. Evaluation

///Traits as "concept".
pub trait Sdf3d{
 fn eval_sdf3d(&self, at: Vec3) -> f32;
}

//Note "Box" is taken, use cuboid
struct Cuboid(Vec3);
struct Sphere(f32);
struct Union{
 left: Box<dyn Sdf3d>,
 right: Box<dyn Sdf3d>
}
struct Offset{
 offset: Vec3,
 sub: Box<dyn Sdf3d>
}

//.. implementation of Cuboid, Sphere, Union, Offset

#[autodiff(autodiff_sdf, Forward, Dual, Dual)]
fn sdf(at: Vec3, res: &mut f32) {
 let csg = Union{
 left: Box::new(Offset{
 offset: Vec3::X,
 sub: Box::new(Cuboid(Vec3::ONE))
 }),
 right: Box::new(Sphere(1.0))
 };
 *res = csg.eval_sdf3d(at);
}

(a) Trait object Rust implementationSee fig. A.2 for the whole implementation.

#[autodiff(autodiff_sdf, Forward, Dual, Dual)]
fn sdf(at: Vec3, res: &mut f32) {
 //sdf of a sphere at "at".
 let sphere = at.length() - 1.0;
 //Offset the box "at" parameter
 let box_offset = at - Vec3::ONE;
 //calculate the box's sdf with an
 //extent of Vec3::ONE
 //at "box_offset".
 let boxsdf = {
 let q = box_offset.abs() - Vec3::ONE;
 q.max(Vec3::ZERO).length()
 + q.max_element().min(0.0)
 };
 //union both parts
 let union = sphere.min(boxsdf);
 *res = union;
}

(b) Hand-unfolded derivable implementation
Figure 5.1.: Rust implementation of Vola’s CSG-tree.

5.4. Example use-cases

We now evaluate the usage of the system in practical examples. We take a closer look at ray-tracing enhancement and then present several smaller examples that highlight more artisticuse-cases for derivatives.
5.4.1. Segement tracing approximation

We can optimize the ray tracing algorithm used to render images from SDFs as described insection 2.3.4. We use a segment-tracing [32] approximation, that uses the local derivative ofthe SDF at the start and end of each segment, to approximate the local Lipschitz bound.Furthermore, we compare the standard sphere-tracing based rendering to the segement-tracing approximation. We now have four combinations to render the SDF that can be com-pared:
• Sphere tracing with numeric gradient
• Sphere tracing with AD gradient
• Segment tracing with numeric gradient
• Segment tracing with AD gradient

The differentiation capability has no impact on the sphere-tracing algorithm. We thereforemerge the analytic and numeric gradient into one case.To get a better picture of the overall performance characteristics, we measure the three com-binations in three scenarios. A mixed (fig. 5.2a) scenario, with far away intersections as well as

45

5. Evaluation

close intersections. A gracing angle (fig. 5.2b) scenario that includes the worst case for sphere-tracing: an infinite surface parallel ray. Finally, a third case, the bound (fig. 5.2c) scenario capsthe traveled ray distance at an infinite plane.The benchmark increases the rendering distance in 5 unit increments on the x-axis. For eachdistance, we measure the minimum and maximum iteration count per frame. We repeat thismeasurement across 20 frames and calculate the average. Each time, the benchmark rendersat a resolution of 1440x1440 on an AMD RX6800-XT on Linux using the mesa RADV Vulkandriver.Figure 5.3 shows the minimum and maximum field function evaluation count parameterizedby the render distance on the x-axis for each scenario. It is to note that we abort root finding4
after 8192 steps of the respective ray tracing algorithm, to prevent the graphics card fromlocking up.Observe that the segment-tracing uses more field evaluations in the numerical case thansphere tracing most of the time. It needs six field evaluations to create the directional deriva-tive, two times per step (needed for start and end of the segment), as well as an initial fieldevaluation. This comes down to 13 field evaluations per segment-tracing step in the numericalcase, compared to one for sphere-tracing.The analytical, AD based case takes three evaluations. Two gradient-field evaluations (for thestart and end of the segment) as well as an initial field evaluation. That makes segment tracingmore efficient than sphere tracing in all three scenarios.Special attention should be given to the gracing angle case. Sphere tracing maintains the (ex-pected) linear growth after the 150-unit mark5. In contrast, segment-tracing (in the analyticalcase) only grows till approximately 120-units. After that point it maintains about 1000 evalu-ations per frame maximum. The reason is that the gracing-angle case can reliability be over-stepped: Whether a ray terminates, or not, is reliability found after those evaluations, includingthe never-terminating, parallel-to-the-surface case.Interestingly, the minimum field evaluations per frame are similar for all three algorithms.

4Meaning the process of finding a close to zero value on the ray.5This is when all ever intersection ray have terminated, and only the never terminating rays are still in flight. There-fore, the evaluation count linearly grows by the constant iterations-per-unit amount.

46

5. Evaluation

(a) Mixed (b) Bound (c) Gracing angle
Figure 5.2.: Segment tracingThe three rendering scenarios with field evaluation heat maps (darker is better). Top to bot-tom: Sideways scheme of the rendered scene, Rendering, Sphere-Tracing, Segment-TracingNumeric, Segment-Tracing Analytic

47

5. Evaluation

Figure 5.3.: Rendering scenarios: Evaluations at rendering distance

48

5. Evaluation

5.4.2. Normal vector calculation

The normal vector of a surface plays a crucial role for shading surfaces in computer graphics,even for simple [8] shading models.In SDF the normal vector at any given point in the field is equal to the normalized gradient,at that point. This allows us to formulate a normal-vector-field in Vola in fig. 5.4a. Applying thenormal vector as the color of an object, one can observe the smooth interpolation over thesurface in fig. 5.4b.What makes this approach interesting, though, is the fact, that such a normal vector does nothave to reside on a surface6. It is defined in the whole parameter space of the SDF. We coulddefine density fields (by redefining the distance function’s interpretation) as a special case ofthe SDF. Elaborate volume rendering algorithms, like [95], exploit that fact. The make use ofthat information to implement shaded volume rendering, without having to resort to expensivediscretization of the volume data.
operation NormalToColor();
impl NormalToColor<sub> for Color3d(at){
 let grad = diff(eval sub.Sdf3d(at), at);

 abs(grad / [length(grad); 3])
}

define myugf(time: s){
 NormalToColor(){
 UnionStairs(0.2, 5.0 + sin(time)){
 Sphere(1.0)
 }{
 SmoothUnion(0.2){
 Trans3d([1.5, 1.0, 0.0]){
 Box([1.0; 3])
 }
 }{
 Trans3d([2.0, -0.0, 0.0]){
 Cylinder(0.2, 0.5)
 }
 }
 }}
}

(a) Coloring based on normal vector (b) NormalToColor applied to object
Figure 5.4.: Normal vector coloring

5.4.3. Time derivative based animation emphasis

The ability to differentiate any function offers a tool to simplify artistic processes. Movementcurves can be differentiated to enhance visual dynamics, such as emphasizing motion in acartoon-like style. The first derivative of a curve can be used to orientation an object along theartist defined curve, while the second derivative is used to retrieve acceleration information,which can amplify the movement of an object by scaling it. The latter is also known in animationas squash-and-stretch [67].This technique is already employed when utilizing splines as a means of describing paths. Thederivative calculation for such paths is well explored. The AD implementation enhances thatworkflow by not constraining the artist to splines. It is offering that freedom for any animationpath in space.
6Contrary to surface based model representations like polygons or non-uniform rational B-spline (NURBS).

49

5. Evaluation

In fig. 5.5 we use a Sinc function to represent a cartoon inspired bouncing motion. The
ObjectAlong-operator takes care of animating the sub object along that curve, and squash-ing/stretching it according to the function’s acceleration characteristics. Be aware that
ObjectAlong does only retrieve the final position of the object, not its curve function. Theartist is free to supply any curve, as long as it stays in 3D space.

define animated_cube(time: s){
 let anim_phase = (time % 5.0) * 2.0;
 let a = 3.141 * (2.0 * anim_phase - 1.0);
 let sinc = sin(a) / a;

 ObjectAlong(
 [anim_phase * 3.0, sinc * 5.0, 0.0],
 time
){
 Round(0.2){Box([1.0;3])}
 }
}

(a) Using the ObjectAlong operator (b) Movement of the object
Figure 5.5.: Animation with time derivatives

5.4.4. Edge-sharpness based coloring

Sharpness of an object is useful in an artistic context. It can be used to drive effects like edgewear, shading, or simply finding edges on an object.The first derivative of a signed distance function with respect to the evaluation location is the
change of the distance field at the point (ddist in fig. 5.6a).The derivative of this value is the change of the change of the distance field, or in other words,the curvature of the field. A higher value signals a greater change, also known as a sharperchange. What constitutes an edge, becomes a threshold on that measurement.Applied to our operator, we build the derivative of ddist. The result is a 3x3 matrix. We foldthis matrix into the sharpness measurement by taking the length of each column and then themaximum element of each length. The resulting sharpness value is the highest change in thedistance field on each dimensional axis.In this case, we simply switch the colors cola and colb based on the mentioned thresholdvalue. Artistically, you could also interpolate instead, select a coloring function etc.

50

5. Evaluation

operation Sharpness(
 threshold: s,
 color_a: vec3,
 color_b: vec3
);
impl Sharpness<sub> for Color3d(at){
 let ddist = diff(eval sub.Sdf3d(at), at);
 let second = diff(ddist, at);
 let maxes = [
 length(second.x),
 length(second.y),
 length(second.z)
];
 let sharpness = max_element(maxes);

 let is_sharp = if sharpness > threshold{
 1.0
 }else{
 0.0
 };

 mix(color_a, color_b, [is_sharp; 3])
}

(a) Vola code for sharpness based coloring
(b) Sharpness operator applied to achamfer/bevel-union of a sphere anda box.

Figure 5.6.: Sharpness based coloring operator

5.5. Shortcomings

While working with higher order derivatives, a problem with the approximation of non-differential functions (cf. section 3.1.5) becomes apparent. An approximation that produces agood first derivative approximation can lead to bigger errors in higher derivatives.In our case, we approximate |x| with √
x2 + c. If we plot the first and second derivative ofboth functions in fig. 5.7a, we can see that the first derivative is a reasonable approximation,but the second derivative does not approximate the original function’s second derivative any-more. This creates artifacts as seen in fig. 5.7b for the sharpness-based coloring shown insection 5.4.4. Notice the banding artifacts along the edges of the cube.There are two solutions to the issue. One could choose the approximation more carefully toaccount for better approximations in higher derivatives. If the derivative count foreseeable andin a low range, this might be the fastest way of accounting for such errors. This approach doesnot scale to arbitrary derivative calculations. The better, more advanced procedure would beable to keep track of the original expression, and apply a fitting approximation depending onthe derivative. In our example case, the derivative producer (described in section 4.3) wouldemit f ′ for the first derivative, but annotate the origin of the emitted expression as being the

first derivative of |x|. Whenever an expression is differentiated once more, the producer findsthat annotation, and can therefore apply a special case for the expression f ′′.This implies a much greater bookkeeping overhead compared to the currently employedcanonicalization approach, but is rewarded with better higher order derivatives.

51

5. Evaluation

−3 −2 −1 0 1 2 3
𝑥

−2

0

2

4
𝑦

𝑓 ′(𝑥) = 𝑥
|𝑥|

𝑓 ′
≈(𝑥) = 𝑥

√(𝑥2)+𝑐

𝑓″(𝑥) = {0 if 𝑥≠0
undefined if 𝑥=0

𝑓″
≈(𝑥) = 𝑐

(𝑐+𝑥2)
3
2

(a) First and second derivative of f(x) = |x|.

(b) Artifacts on cube’s edges
Figure 5.7.: Second order derivative artifacts.

52

6. Conclusion
Our application research suggests, that having access to derivatives enables a wide range ofreal-world use cases by providing the mathematical tools necessary for optimization, simula-tion, and modeling in various domains. We surveyed the current landscape of AD tools, andconducted a comparison among bigger, active implementations across multiple domains andabstraction levels. Special interest was taken in their specific design decisions and how com-mon challenges, most notable non-differential code and memory-usage, are overcome. Usingthis information, we developed an implementation tailored to our domain, overcoming thosechallenges by leveraging assumptions we can make in our field. We found that our domain-specific approach allowed us to take shortcuts unavailable in more general frameworks, result-ing in a comparatively small implementation. Using the compiler level for our implementationoffered additional advantages, as it provided access to existing optimization strategies andcontrol-flow and data-flow information available in the IR.Our work resulted in a forward-mode differentiation implementation that is surprisingly robustagainst incorrect handling of derivative. We permit approximations that enhance its practicalapplicability when precision is not needed. However, these approximations proved inade-quate, when scaling to higher-order derivatives, as detailed in section 5.5. A more compre-hensive system, that uses auxiliary information provided by the compiler, could address theseproblems. It could leverage the additional information to emit better fitting approximationsvia special casing rules. Such a system might scalable better to higher derivatives but also in-troduces challenges in maintainability, as the complexity of the AD implementations increaseswith the number of supported operations.Our exploration also demonstrated applications of derivatives within the context of SDFs,showcasing their potential in simple scenarios. Further applications outlined in section 2.3suggest more sophisticated applications that remain open to further investigation. This workhighlights both the potential of domain-specific AD implementations and the ongoing chal-lenges and opportunities in extending their capabilities.Referring back to our initial motivation we could show, that differentiating compilers are anefficient way of combining AD and DF research, while also preserving the mathematical prop-erties and precision of such fields until evaluation. In the future such a framework can proofuseful in other, not yet explored applications in the field.

53

6. Conclusion

6.1. Future work

While working on, and with the AD implementation, several ideas and aspects came to light,that we did not consider before, or did not have the time to implement.
6.1.1. Backward mode

We do not currently have a backward-mode implementation. Backward mode introduces addi-tional complexity, to both, the activity analysis and derivative generation. Unlike forward-modedifferentiation, which is straightforward for many scenarios, reverse-mode requires carefulconsideration of computational dependencies to ensure efficiency. Especially, reuse of exist-ing values becomes important not just for a fast compilation, but also short runtime of thegenerated code (cf. section 2.4.4).We also currently lack a well-defined heuristic for determining when to apply forward or back-ward mode. Most tools leave this decision to the user, relying on domain-specific knowledge ortrial-and-error to choose between forward and reverse modes. Developing a robust heuristicor adaptive mechanism to automate this decision could significantly enhance usability for thenon-expert user of the DSL, and the AD feature.Nevertheless, backward mode would likely be crucial for any application involving machinelearning or gradient descent. Its ability to handle large-scale problems efficiently makes it afoundational requirement for modern computational frameworks in these domains.
6.1.2. Better approximation framework

AD in compilers can benefit from maintaining more context about the nodes in the computa-tional graph. By tracking richer information about the relationships of nodes (cf. section 5.5),the compiler can make more informed decisions about derivative computations. This enablesbetter handling of special cases, a strategy already used for some operations (section 4.3), andwhich could be expanded significantly with enhanced context-awareness.Special-casing allows the compiler to optimize patterns, such as simplifying certain derivatives(based on the enhanced context information) or recognizing higher order derivatives. Witha more informed framework, these optimizations could extend to more complex cases, im-proving performance and flexibility. However, increasing reliance on special cases introducesmaintenance challenges, as the approach’s strength depends on the number of cases it sup-ports.
6.1.3. DSL Rewriting

Rewriting systems offer a powerful way for expressing transformations on program represen-tations. A domain-specific language tailored to rewriting, inspired by systems like Cranelift’sISLE [26], MLIR’s PDLL [74], and Egg/Egglog [112, 116], could enhance the flexibility of derivativecreation. This way we would reformulate the derivative creation as a term-rewriting problem.This DSL would enable the specification of derivative rules in a declarative manner. With con-ditions attached to rewrite rules, the system could describe derivative transformations blindlywhile relying on an optimizer to select the most efficient paths. Paired with enhanced contextidea from section 5.5 such a system would reduce the maintenance burden (compared tohandwritten transformations), and potentially increase the generated derivative’s quality.

54

6. Conclusion

6.1.4. Differential types

The current type-system handles scalars, vectors, and matrices well, it lacks native supportfor higher-level types like complex numbers, quaternions, and rotors though. These typeshave well-defined derivatives and are a good fit for accurately representing operations suchas rotations. If we try to represent quaternions as four-component vectors, differentiating atthe moment will yield incorrect results. In order to correctly handle such cases, and improvingthe fitness of the language itself, we would have to introduce such concepts as first-class typesto the language and its compiler.We support matrices, and therefore rotation matrices, representing rotations at all is thereforealready possible. Since the DSL is focused on representing objects in space, it is reasonable tointroduce such specialized types. The same idea also applies to other mathematical constructswith defined derivatives.
6.1.5. Interval arithmetic

Similar projects in the SDF domain (e.g. Libfive [58], MPR [60] and Fidget [81]) enhance theircapabilities by adding interval arithmetic to their evaluation options. It is adjacent to standardevaluation and derivative creation, since it provides yet another perspective on interpreting agiven function. The standard evaluation returns the result of a function. AD returns the changeof that function. Interval evaluation would return the upper and lower bound of that function’sresults in a given interval. This is useful whenever an understanding of a function’s behaviorover a region is needed, rather than at a discrete point.That capability opens up even more analysis options for the represented DF. It can aid in poly-gonization [108] and image generation through ray-tracing [65].The combined use of AD and interval arithmetic allows the analysis of a distance-functions be-havior in an interval, which is the basis for the linear forward-inclusion-functions [4] mentionedin section 2.3.4.

55

Bibliography
[1] Bytecode Alliance. “Wasmtime: A standalone runtime for WebAssembly”. In: (2024).URL: https://github.com/bytecodealliance/wasmtime.
[2] Joel A E Andersson et al. “CasADi – A software framework for nonlinear optimizationand optimal control”. In: Mathematical Programming Computation 11.1 (2019), pp. 1–36. DOI: 10.1007/s12532-018-0139-4.
[3] Enzyme Rust Authors. In: (2024). URL: https : / / web . archive . org / web /

20241113102728/https://enzyme.mit.edu/index.fcgi/rust/print.html.
[4] Melike Aydinlilar and Cédric Zanni. “Forward inclusion functions for ray-tracing implicitsurfaces”. In: Computers and Graphics 114 (June 2023), pp. 190–200. DOI: 10.1016/j.

cag.2023.05.026. URL: https://inria.hal.science/hal-04129922.
[5] Csaba Bálint and Gábor Valasek. “Accelerating Sphere Tracing”. In: Eurographics. 2018.URL: https://api.semanticscholar.org/CorpusID:51958599.
[6] Atilim Gunes Baydin, Barak A. Pearlmutter, and Jeffrey Mark Siskind. “DiffSharp: Auto-matic Differentiation Library”. In: CoRR abs/1511.07727 (2015). arXiv: 1511.07727. URL:

http://arxiv.org/abs/1511.07727.
[7] Atilim Gunes Baydin et al. “Automatic Differentiation in Machine Learning: a Survey”. In:

Journal of Machine Learning Research 18.153 (2018), pp. 1–43. URL: http://jmlr.org/
papers/v18/17-468.html.

[8] Gary Bishop and David M. Weimer. “Fast Phong shading”. In: SIGGRAPH Comput. Graph.20.4 (Aug. 1986), pp. 103–106. ISSN: 0097-8930. DOI: 10.1145/15886.15897. URL:
https://doi.org/10.1145/15886.15897.

[9] James Bradbury et al. JAX: composable transformations of Python+NumPy programs. Ver-sion 0.3.13. 2018. URL: http://github.com/google/jax.
[10] Nick Brown et al. “xDSL: A common compiler ecosystem for domain specific languages”.English. In: Supercomputing 2023, SC23 ; Conference date: 12-11-2023 Through 17-11-2023. Nov. 2022. URL: https://sc23.supercomputing.org/.
[11] Dan Cascaval et al. “Differentiable 3D CAD Programs for Bidirectional Editing”. In: CoRRabs/2110.01182 (2021). arXiv: 2110.01182. URL: https://arxiv.org/abs/2110.

01182.
[12] Christopher Choy, JunYoung Gwak, and Silvio Savarese. “4D Spatio-Temporal ConvNets:Minkowski Convolutional Neural Networks”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2019, pp. 3075–3084.

56

Bibliography

[13] Sebastian Christodoulou and Uwe Naumann. Differentiable Programming: Efficient
Smoothing of Control-Flow-Induced Discontinuities. 2023. arXiv: 2305 . 06692 [cs.PL].URL: https://arxiv.org/abs/2305.06692.

[14] William Clifford. “Preliminary Sketch of Biquaternions”. In: Proceedings of the London
Mathematical Society s1-4.1 (1871), pp. 381–395. DOI: https://doi.org/10.1112/
plms/s1-4.1.381. eprint: https://londmathsoc.onlinelibrary.wiley.com/doi/
pdf/10.1112/plms/s1-4.1.381. URL: https://londmathsoc.onlinelibrary.
wiley.com/doi/abs/10.1112/plms/s1-4.1.381.

[15] Thomas F. Coleman and Arun Verma. “The Efficient Computation of Sparse Jaco-bian Matrices Using Automatic Differentiation”. In: SIAM Journal on Scientific Comput-
ing 19.4 (1998), pp. 1210–1233. DOI: 10.1137/S1064827595295349. eprint: https:
//doi.org/10.1137/S1064827595295349. URL: https://doi.org/10.1137/
S1064827595295349.

[16] Calvin Rose & Janet contributors. “Janet Language”. In: (2024). URL: https://janet-
lang.org/.

[17] Blake Courter. “Unit Gradient Fields: SDFs, UGFs, and their friends”. In: (2023). URL:
https://www.blakecourter.com/2023/05/18/field-notation.html.

[18] Blake Courter. “Unit Gradient Fields: What do we mean by ”offset”?” In: (2023). URL:
https://www.blakecourter.com/2023/05/05/what-is-offset.html.

[19] John Dannenhoffer and Robert Haimes. “Design Sensitivity Calculations Directly onCAD-based Geometry”. In: 53rd AIAA Aerospace Sciences Meeting. DOI: 10.2514/6.2015-
1370. eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2015-1370. URL: https:
//arc.aiaa.org/doi/abs/10.2514/6.2015-1370.

[20] Benjamin Dauvergne and Laurent Hascoët. “The Data-Flow Equations of Checkpointingin Reverse Automatic Differentiation”. In: Computational Science – ICCS 2006. Ed. by Vas-sil N. Alexandrov et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 566–573. ISBN: 978-3-540-34386-8.
[21] Aesara Developers. “Aesara”. In: (2024). URL: https://github.com/aesara-devs/

aesara.
[22] PyMC Developers. “PyTensor”. In: (2024). URL: https://github.com/pymc- devs/

pytensor.
[23] The Rust Project Developers. “The Rust Language Reference”. In: (2024). URL: https:

//doc.rust-lang.org/reference/types/trait-object.html.
[24] Tao Du et al. “InverseCSG: automatic conversion of 3D models to CSG trees”. In: ACM

Trans. Graph. 37.6 (Dec. 2018). ISSN: 0730-0301. DOI: 10.1145/3272127.3275006.URL: https://doi.org/10.1145/3272127.3275006.
[25] Conal Elliott. “Beautiful differentiation”. In: International Conference on Functional

Programming (ICFP). 2009. URL: http : / / conal . net / papers / beautiful -
differentiation.

[26] Chris Fallin. “Cranelift’s Instruction Selector DSL, ISLE: Term-Rewriting Made Practical”.In: (Jan. 2023). URL: https://web.archive.org/web/20241005052455/https:
//cfallin.org/blog/2023/01/20/cranelift-isle/.

[27] Christèle Faure and Uwe Naumann. “Minimizing the Tape Size”. In: Automatic Differentia-
tion of Algorithms: From Simulation to Optimization. Ed. by George Corliss et al. New York,NY: Springer New York, 2002, pp. 293–298. ISBN: 978-1-4613-0075-5. DOI: 10.1007/
978-1-4613-0075-5 34. URL: https://doi.org/10.1007/978-1-4613-0075-5 34.

57

Bibliography

[28] Pierre-Alain Fayolle and Markus Friedrich. “A Survey of Methods for Converting Un-structured Data to CSG Models”. In: Comput. Aided Des. 168 (2023), p. 103655. URL:
https://api.semanticscholar.org/CorpusID:258436689.

[29] Jeffrey A. Fike and Juan J. Alonso. “Automatic Differentiation Through the Use of Hyper-Dual Numbers for Second Derivatives”. In: Recent Advances in Algorithmic Differentiation.Ed. by Shaun Forth et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 163–173. ISBN: 978-3-642-30023-3.
[30] Shaun A. Forth. “An efficient overloaded implementation of forward mode automaticdifferentiation in MATLAB”. In: ACM Trans. Math. Softw. 32.2 (June 2006), pp. 195–222.ISSN: 0098-3500. DOI: 10.1145/1141885.1141888. URL: https://doi.org/10.1145/

1141885.1141888.
[31] Markus Friedrich et al. “CSG Tree Extraction from 3D Point Clouds and Meshes Usinga Hybrid Approach”. In: Computer Vision, Imaging and Computer Graphics Theory and

Applications. Ed. by Kadi Bouatouch et al. Cham: Springer International Publishing, 2022,pp. 53–79. ISBN: 978-3-030-94893-1.
[32] Eric Galin et al. “Segment Tracing Using Local Lipschitz Bounds”. In: Computer Graphics

Forum 39.2 (2020), pp. 545–554. DOI: https://doi.org/10.1111/cgf.13951. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13951. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13951.

[33] Assefaw H. Gebremedhin and Andrea Walther. “An introduction to algorithmic differen-tiation”. In: WIREs Data Mining and Knowledge Discovery 10.1 (2020), e1334. DOI: https:
//doi.org/10.1002/widm.1334. eprint: https://wires.onlinelibrary.wiley.
com/doi/pdf/10.1002/widm.1334. URL: https://wires.onlinelibrary.wiley.
com/doi/abs/10.1002/widm.1334.

[34] Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. “What Color Is YourJacobian? Graph Coloring for Computing Derivatives”. In: SIAM Rev. 47 (2005), pp. 629–705. URL: https://api.semanticscholar.org/CorpusID:8849423.
[35] Kyriakos C. Giannakoglou and Dimitrios I. Papadimitriou. “Adjoint Methods for ShapeOptimization”. In: Optimization and Computational Fluid Dynamics. Ed. by DominiqueThévenin and Gábor Janiga. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,pp. 79–108. ISBN: 978-3-540-72153-6. DOI: 10.1007/978-3-540-72153-6 4. URL:

https://doi.org/10.1007/978-3-540-72153-6 4.
[36] Andreas Griewank. “Achieving logarithmic growth of temporal and spatial complexityin reverse automatic differentiation”. In: Optimization Methods and Software 1.1 (1992),pp. 35–54. DOI: 10.1080/10556789208805505. eprint: https://doi.org/10.1080/

10556789208805505. URL: https://doi.org/10.1080/10556789208805505.
[37] Andreas Griewank. “Who Invented the Reverse Mode of Differentiation”. In: 2012. URL:

https://api.semanticscholar.org/CorpusID:15568746.
[38] Andreas Griewank and Andrea Walther. “Algorithm 799: revolve: an implementation ofcheckpointing for the reverse or adjoint mode of computational differentiation”. In: ACM

Trans. Math. Softw. 26.1 (Mar. 2000), p. 19. ISSN: 0098-3500. DOI: 10.1145/347837.
347846. URL: https://doi.org/10.1145/347837.347846.

[39] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation. Second. USA: Society for Industrial and Applied Mathemat-ics, 2008. ISBN: 0898716594.

[40] Hao-Xiang Guo et al. “Implicit Conversion of Manifold B-Rep Solids by Neural HalfspaceRepresentation”. In: ACM Trans. Graph. 41.6 (Nov. 2022). ISSN: 0730-0301. DOI: 10.
1145/3550454.3555502. URL: https://doi.org/10.1145/3550454.3555502.

58

Bibliography

[41] Milad Hakimi and Arrvindh Shriraman. “TapeFlow: Streaming Gradient Tapes in Auto-matic Differentiation”. In: 2024 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 2024, pp. 81–92. DOI: 10.1109/CGO57630.2024.10444805.

[42] Ralf Hannemann et al. “Discrete first- and second-order adjoints and automatic differ-entiation for the sensitivity analysis of dynamic models”. In: Procedia Computer Science1.1 (2010). ICCS 2010, pp. 297–305. ISSN: 1877-0509. DOI: https://doi.org/10.
1016/j.procs.2010.04.033. URL: https://www.sciencedirect.com/science/
article/pii/S1877050910000347.

[43] John C. Hart. “Sphere tracing: a geometric method for the antialiased ray tracing ofimplicit surfaces”. In: The Visual Computer 12.10 (1996), pp. 527–545. ISSN: 1432-2315.DOI: 10.1007/s003710050084. URL: https://doi.org/10.1007/s003710050084.
[44] Laurent Hascoet and Valérie Pascual. “The Tapenade automatic differentiation tool:Principles, model, and specification”. In: ACM Trans. Math. Softw. 39.3 (May 2013). ISSN:0098-3500. DOI: 10.1145/2450153.2450158. URL: https://doi.org/10.1145/

2450153.2450158.
[45] Ian Henry. “Bauble.Studio”. In: (). URL: https://github.com/ianthehenry/bauble.

studio.
[46] Robin J. Hogan. “Fast Reverse-Mode Automatic Differentiation using Expression Tem-plates in C++”. In: ACM Trans. Math. Softw. 40.4 (July 2014). ISSN: 0098-3500. DOI: 10.

1145/2560359. URL: https://doi.org/10.1145/2560359.
[47] J.H. Hubbard and B.B. Hubbard. Vector Calculus, Linear Algebra, and Differential Forms: A

Unified Approach. Appendix A4. Prentice Hall, 2002. ISBN: 9780130414083. URL: https:
//books.google.de/books?id=bW92QgAACAAJ.

[48] Jan Hückelheim et al. “Automatic Differentiation for Adjoint Stencil Loops”. In: Proceed-
ings of the 48th International Conference on Parallel Processing. ICPP ’19. Kyoto, Japan:Association for Computing Machinery, 2019. ISBN: 9781450362955. DOI: 10.1145/
3337821.3337906. URL: https://doi.org/10.1145/3337821.3337906.

[49] nTopology Inc. “nTop”. In: (2024). URL: https://www.ntop.com/.
[50] nTopology Inc. “nTop 5 is here: Expanding the implicit ecosystem, boosting perfor-mance and precision”. In: (2024). URL: https://www.ntop.com/resources/product-

updates/ntop-5/.
[51] Michael Innes. “Don’t Unroll Adjoint: Differentiating SSA-Form Programs”. In: CoRRabs/1810.07951 (2018). arXiv: 1810.07951. URL: http://arxiv.org/abs/1810.

07951.
[52] Masao Iri and Koichi Kubota. “Automatic differentiation: introduction, history androunding error estimationAutomatic Differentiation: Introduction, History and Round-ing Error Estimation”. In: Encyclopedia of Optimization. Ed. by Christodoulos A. Floudasand Panos M. Pardalos. Boston, MA: Springer US, 2001, pp. 97–102. ISBN: 978-0-306-48332-5. DOI: 10.1007/0-306-48332-7 19. URL: https://doi.org/10.1007/0-

306-48332-7 19.
[53] Cache-Aware and Roofline-Ideal Automatic Differentiation. Vol. Day 1 Tue, October 26,2021. SPE Reservoir Simulation Conference. Oct. 2021, D011S012R004. DOI: 10.2118/

203933-MS. eprint: https://onepetro.org/spersc/proceedings-pdf/21RSC/1-
21RSC/D011S012R004/2508238/spe-203933-ms.pdf. URL: https://doi.org/10.
2118/203933-MS.

[54] LunarG John Kessenich. “SPIR-V: A Khronos-Defined Intermediate Language for NativeRepresentation of Graphical Shaders and Compute Kernels”. In: (2015). URL: https:
//registry.khronos.org/SPIR-V/papers/WhitePaper.html.

59

Bibliography

[55] Randi Rost John Kessenich Dave Baldwin. “The OpenGL® Shading Language”. In: (June2014). URL: https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.
40.pdf.

[56] M.W. Jones, J.A. Baerentzen, and M. Sramek. “3D distance fields: a survey of techniquesand applications”. In: IEEE Transactions on Visualization and Computer Graphics 12.4(2006), pp. 581–599. DOI: 10.1109/TVCG.2006.56.
[57] Tim Kaler et al. “PARAD: A Work-Efficient Parallel Algorithm for Reverse-Mode AutomaticDifferentiation”. In: Symposium on Algorithmic Principles of Computer Systems (APOCS),pp. 144–158. DOI: 10.1137/1.9781611976489.11. eprint: https://epubs.siam.

org/doi/pdf/10.1137/1.9781611976489.11. URL: https://epubs.siam.org/doi/
abs/10.1137/1.9781611976489.11.

[58] Matt Keeter. “libfive”. In: (2024). URL: https://libfive.com/about.
[59] Matt Keeter. “Lineage of CBA CAD Tools”. In: (2017). URL: https://www.mattkeeter.

com/blog/2017-01-09-lineage/.
[60] Matthew J. Keeter. “Massively Parallel Rendering of Complex Closed-Form Implicit Sur-faces”. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH) 39.4 (July 2020).
[61] Benjamin Keinert et al. “Enhanced Sphere Tracing ”. In: Smart Tools and Apps for Graphics

- Eurographics Italian Chapter Conference. Ed. by Andrea Giachetti. The EurographicsAssociation, 2014. ISBN: 978-3-905674-72-9. DOI: /10.2312/stag.20141233.
[62] Kamil A. Khan and Paul I. Barton. “A vector forward mode of automatic differentiation forgeneralized derivative evaluation”. In: Optimization Methods and Software 30.6 (2015),pp. 1185–1212. DOI: 10.1080/10556788.2015.1025400. eprint: https://doi.org/

10.1080/10556788.2015.1025400. URL: https://doi.org/10.1080/10556788.
2015.1025400.

[63] Marius Kintel. “OpenSCAD: The Programmers Solid 3D CAD Modeller”. In: (2024). URL:
https://openscad.org/about.html#underlying-technology.

[64] Elisabeth Kluth. “Raumkünstler”. In: (2023). URL: https://github.com/elisabeth96/
Raumkuenstler.

[65] Aaron Knoll et al. “Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval andAffine Arithmetic”. In: Computer Graphics Forum 28 (2009). URL: https : / / api .
semanticscholar.org/CorpusID:696144.

[66] Johann Korndörfer et al. HG SDF A glsl library for building signed distance functions.
https://mercury.sexy/hg sdf. Accessed: 2021-07-28. 2015.

[67] Ji-yong Kwon and In-Kwon Lee. “The Squash-and-Stretch Stylization for Character Mo-tions”. In: IEEE Transactions on Visualization and Computer Graphics 18.3 (2012), pp. 488–500. DOI: 10.1109/TVCG.2011.48.
[68] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: a LLVM-based Python JITcompiler”. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure

in HPC. LLVM ’15. Austin, Texas: Association for Computing Machinery, 2015. ISBN:9781450340052. DOI: 10.1145/2833157.2833162. URL: https://doi.org/10.
1145/2833157.2833162.

[69] Chris Lattner et al. “MLIR: Scaling Compiler Infrastructure for Domain Specific Compu-tation”. In: 2021 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). 2021, pp. 2–14. DOI: 10.1109/CGO51591.2021.9370308.

60

Bibliography

[70] Soeren Laue, Matthias Mitterreiter, and Joachim Giesen. “Computing Higher OrderDerivatives of Matrix and Tensor Expressions”. In: Advances in Neural Information
Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018.URL: https : / / proceedings . neurips . cc / paper files / paper / 2018 / file /
0a1bf96b7165e962e90cb14648c9462d-Paper.pdf.

[71] Allan M. M. Leal. autodiff, a modern, fast and expressive C++ library for automatic differen-
tiation. https://autodiff.github.io. 2018. URL: https://autodiff.github.io.

[72] Seppo Linnainmaa. Algoritmin kumulatiivinen pyöristysvirhe yksittäisten pyöristysvirheiden.fin. 2020. URL: URN:NBN:fi:hulib-202006173019;http://hdl.handle.net/10138/
316565.

[73] Hsueh-Ti Derek Liu et al. “A Unified Differentiable Boolean Operator with Fuzzy Logic”.In: International Conference on Computer Graphics and Interactive Techniques. 2024. URL:
https://api.semanticscholar.org/CorpusID:271182710.

[74] LLVM. “PDLL - PDL Language”. In: (2024). URL: https://mlir.llvm.org/docs/PDLL/
#why-build-a-new-language-instead-of-improving-tablegen-drr.

[75] Julia Longtin. “ImplicitCAD”. In: (2024). URL: https://implicitcad.org/.
[76] Honglin Luo, Xianfu Wang, and Brett Lukens. “Variational Analysis on the Signed Dis-tance Functions”. In: Journal of Optimization Theory and Applications 180.3 (2019),pp. 751–774. ISSN: 1573-2878. DOI: 10.1007/s10957- 018- 1414- 2. URL: https:

//doi.org/10.1007/s10957-018-1414-2.
[77] Dan MacKinlay. “Automatic differentiation”. In: (2023). URL: https://danmackinlay.

name/notebook/autodiff.html.
[78] Dougal Maclaurin, David Duvenaud, and Ryan P Adams. “Autograd: Effortless gradientsin numpy”. In: ICML 2015 AutoML workshop. Vol. 238. 5. 2015.
[79] Charles C. Margossian. “A review of automatic differentiation and its efficient implemen-tation”. In: WIREs Data Mining and Knowledge Discovery 9.4 (Mar. 2019). ISSN: 1942-4795.DOI: 10.1002/widm.1305. URL: http://dx.doi.org/10.1002/WIDM.1305.
[80] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.Software available from tensorflow.org. 2015. URL: https://www.tensorflow.org/.
[81] Bruce Mitchener Matt Keeter. “Fidget”. In: (2024). URL: https://github.com/mkeeter/

fidget.
[82] Tendsin Mende. “Enzyme Bug Report”. In: (2024). URL: https : / / web . archive .

org/web/20241107124616/https://groups.google.com/g/enzyme- dev/c/
wd3fu5aIcJE.

[83] Tendsin Mende. “Vola Test Renderer”. In: (2024). URL: https : / / gitlab . com /
tendsinmende/vola-sdf-renderer.

[84] Tendsin Mende. “Vola-Enzyme differential testing”. In: (2024). URL: https://gitlab.
com/tendsinmende/vola-tests.

[85] Tendsin Mende. “Vola: Volume Language”. In: (2024). URL: https://gitlab.com/
tendsinmende/vola.

[86] Tendsin Mende. “Vola: Volume Language, Egg based expression rewriting”. In: (2024).URL: https://gitlab.com/tendsinmende/vola/- /tree/feature- egg- expr-
rewrite.

61

Bibliography

[87] Bart van Merrienboer, Dan Moldovan, and Alexander Wiltschko. “Tangent: Automaticdifferentiation using source-code transformation for dynamically typed array program-ming”. In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al.Vol. 31. Curran Associates, Inc., 2018. URL: https://proceedings.neurips.cc/
paper files/paper/2018/file/748d6b6ed8e13f857ceaa6cfbdca14b8-Paper.pdf.

[88] Raphael Mosaner et al. “Machine-Learning-Based Self-Optimizing Compiler Heuristics”.In: Proceedings of the 19th International Conference on Managed Programming Languages
and Runtimes. MPLR ’22. Brussels, Belgium: Association for Computing Machinery, 2022,p. 98. ISBN: 9781450396967. DOI: 10.1145/3546918.3546921. URL: https://doi.
org/10.1145/3546918.3546921.

[89] William Moses and Valentin Churavy. “Instead of Rewriting Foreign Code for MachineLearning, Automatically Synthesize Fast Gradients”. In: Advances in Neural Information
Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020,pp. 12472–12485. URL: https://proceedings.neurips.cc/paper/2020/file/
9332c513ef44b682e9347822c2e457ac-Paper.pdf.

[90] William S. Moses et al. “Reverse-mode automatic differentiation and optimization ofGPU kernels via enzyme”. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. SC ’21. St. Louis, Missouri: Associa-tion for Computing Machinery, 2021. ISBN: 9781450384421. DOI: 10.1145/3458817.
3476165. URL: https://doi.org/10.1145/3458817.3476165.

[91] Uwe Naumann. “Call Tree Reversal is NP-Complete”. In: Advances in Automatic Differen-
tiation. Ed. by Christian H. Bischof et al. Berlin, Heidelberg: Springer Berlin Heidelberg,2008, pp. 13–22. ISBN: 978-3-540-68942-3.

[92] Uwe Naumann and Jan Riehme. “A differentiation-enabled Fortran 95 compiler”. In: ACM
Trans. Math. Softw. 31.4 (Dec. 2005), p. 458. ISSN: 0098-3500. DOI: 10.1145/1114268.
1114270. URL: https://doi.org/10.1145/1114268.1114270.

[93] Alex Fischman Oliver Flatt Anjali Pal. “Eggcc”. In: (). URL: https : / / github . com /
egraphs-good/eggcc.

[94] Mai Jacob Peng and Christophe Dubach. “LAGrad: Statically Optimized DifferentiableProgramming in MLIR”. In: Proceedings of the 32nd ACM SIGPLAN International Conference
on Compiler Construction. CC 2023. Montréal, QC, Canada: Association for ComputingMachinery, 2023, p. 228. ISBN: 9798400700880. DOI: 10.1145/3578360.3580259.URL: https://doi.org/10.1145/3578360.3580259.

[95] M. Piochowiak, T. Rapp, and C. Dachsbacher. “Stochastic Volume Rendering of Multi-Phase SPH Data”. In: Computer Graphics Forum 40.1 (2021), pp. 97–109. DOI: https:
//doi.org/10.1111/cgf.14121. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1111/cgf.14121. URL: https://onlinelibrary.wiley.com/doi/abs/10.
1111/cgf.14121.

[96] Nico Reissmann et al. “RVSDG: An Intermediate Representation for Optimizing Com-pilers”. In: ACM Trans. Embed. Comput. Syst. 19.6 (Dec. 2020). ISSN: 1539-9087. DOI:
10.1145/3391902. URL: https://doi.org/10.1145/3391902.

[97] Jarrett Revels, Miles Lubin, and Theodore Papamarkou. “Forward-Mode Automatic Dif-ferentiation in Julia”. In: CoRR abs/1607.07892 (2016). arXiv: 1607.07892. URL: http:
//arxiv.org/abs/1607.07892.

[98] Sam. “incorrect derivative of function that returns struct”. In: (2024). URL: https://
web.archive.org/web/20241127141146/https://github.com/EnzymeAD/Enzyme/
issues/1894.

62

Bibliography

[99] Paul D Sampson. “Fitting conic sections to “very scattered” data: An iterative refine-ment of the bookstein algorithm”. In: Computer Graphics and Image Processing 18.1(1982), pp. 97–108. ISSN: 0146-664X. DOI: https : / / doi . org / 10 . 1016 / 0146 -
664X(82)90101- 0. URL: https://www.sciencedirect.com/science/article/
pii/0146664X82901010.

[100] Gopal Sharma et al. “CSGNet: Neural Shape Parser for Constructive Solid Geometry”.In: CoRR abs/1712.08290 (2017). arXiv: 1712.08290. URL: http://arxiv.org/abs/
1712.08290.

[101] Jamey Sharp. “optir: ”optimizing intermediate representation””. In: (2024). URL: https:
//github.com/jameysharp/optir/.

[102] Jag Mohan Singh and P. J. Narayanan. “Real-Time Ray Tracing of Implicit Surfaces on theGPU”. In: IEEE Transactions on Visualization and Computer Graphics 16.2 (2010), pp. 261–272. DOI: 10.1109/TVCG.2009.41.
[103] Jeffrey Mark Siskind and Barak A. Pearlmutter. “Divide-and-conquer checkpointing forarbitrary programs with no user annotation”. In: Optimization Methods and Software33.4-6 (2018), pp. 1288–1330. DOI: 10.1080/10556788.2018.1459621. eprint: https:

//doi.org/10.1080/10556788.2018.1459621. URL: https://doi.org/10.1080/
10556788.2018.1459621.

[104] Ole Stauning. “Obtaining 2nd Order Derivates Using Mixed Forward- and Backward Au-tomatic Differentiation Strategy for use in Interval Optimization”. English. In: Obtaining
2nd Order Derivates Using Mixed Forward- and Backward Automatic Differentiation Strategy
for use in Interval Optimization. INTERVAL ’96 ; Conference date: 01-01-1996. 1997.

[105] Auto Differentiation Dev Team et al. auto-differentiation/xad: v1.6.0. Version v1.6.0. July2024. DOI: 10.5281/zenodo.12764574. URL: https://doi.org/10.5281/zenodo.
12764574.

[106] The Theano Development Team et al. Theano: A Python framework for fast computation
of mathematical expressions. 2016. arXiv: 1605.02688 [cs.SC]. URL: https://arxiv.
org/abs/1605.02688.

[107] Mircea Trofin et al. “MLGO: a Machine Learning Guided Compiler Optimizations Frame-work”. In: CoRR abs/2101.04808 (2021). arXiv: 2101.04808. URL: https://arxiv.org/
abs/2101.04808.

[108] Gokul Varadhan et al. “Reliable implicit surface polygonization using visibility map-ping”. In: Eurographics Symposium on Geometry Processing. 2006. URL: https://api.
semanticscholar.org/CorpusID:14198399.

[109] V. Vassilev et al. “Clad – Automatic Differentiation Using Clang and LLVM”. In: vol. 608. 1.IOP Publishing, May 2015, p. 012055. DOI: 10.1088/1742-6596/608/1/012055. URL:
https://iopscience.iop.org/article/10.1088/1742-6596/608/1/012055/pdf.

[110] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. “Differentiable Signed DistanceFunction Rendering”. In: Transactions on Graphics (Proceedings of SIGGRAPH) 41.4 (July2022), 125:1–125:18. DOI: 10.1145/3528223.3530139.
[111] Andrea Walther, Andreas Griewank, and Olaf Vogel. “ADOL-C: Automatic DifferentiationUsing Operator Overloading in C++”. In: PAMM 2.1 (2003), pp. 41–44. DOI: https://

doi.org/10.1002/pamm.200310011. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/pamm.200310011. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/pamm.200310011.

[112] Max Willsey et al. “egg: Fast and Extensible Equality Saturation”. In: Proc. ACM Program.
Lang. 5.POPL (Jan. 2021). DOI: 10.1145/3434304. URL: https://doi.org/10.1145/
3434304.

63

Bibliography

[113] Fenggen Yu et al. “CAPRI-Net: Learning Compact CAD Shapes with Adaptive Primitive As-sembly”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2022, pp. 11758–11768. DOI: 10.1109/CVPR52688.2022.01147.
[114] Wenbin Yu and Maxwell Blair. “DNAD, a simple tool for automatic differentiation of For-tran codes using dual numbers”. In: Computer Physics Communications 184.5 (2013),pp. 1446–1452. DOI: 10 . 1016 / j . cpc . 2012 . 12 . 025. URL: http : / / www .

sciencedirect.com/science/article/pii/S0010465513000027.
[115] Jingyang Zhang, Yao Yao, and Long Quan. “Learning Signed Distance Field for Multi-viewSurface Reconstruction”. In: 2021 IEEE/CVF International Conference on Computer Vision

(ICCV) (2021), pp. 6505–6514. URL: https://api.semanticscholar.org/CorpusID:
237266838.

[116] Yihong Zhang et al. “Better Together: Unifying Datalog and Equality Saturation”. In: Proc.
ACM Program. Lang. 7.PLDI (June 2023). DOI: 10.1145/3591239. URL: https://doi.
org/10.1145/3591239.

64

Acronyms
AD automatic differentiation. 35, 37, 38, 41–43
CSG constructive solid geometry. 39, 42
DF distance function. 42
GLSL OpenGL shading language. 42
HLSL high level shading language. 42
RVSDG Regionalized Value State Dependency Graph. 36
SDF signed distance function. 40, 42, 43
UGF unit gradient field. 40
WASM web assembly. 40, 41

65

List of Figures
1.1. Signed distance function fsphere around (0, 0). 81.2. Selected SDFs . 81.3. CSG-tree of a simple model. 91.4. Exporting a distance function from Vola. 101.5. Mathematical and Vola’s notation . 101.6. Implementation of min-union from eq. (1.1) in Vola 101.7. Using CSG-operand to shorten CSG-tree under interpretation. 111.8. Usage of introduced RVSDG nodes . 12
2.1. fsphere computational graph . 182.2. Forward differentiation applied to fsphere . 192.3. Definition of dual numbers . 202.4. Dual number derivative split off . 202.5. Applying first untangling rule followed by the chain rule. 202.6. Backward differentiation applied to fsphere . 22
3.1. Smooth abs approximation in XAD [105] . 303.2. Function-call style syntax . 313.3. Derivative of a sphere in Vola . 31
4.1. Differentiation pipeline overview . 334.2. Compiler state before sphere differentiation. 344.3. AD entrypoint split into three. 354.4. Canonicalized expression . 364.5. Node activity in AD dependencies . 374.6. Pure differential value creation . 384.7. Graph after first forward-mode application . 404.8. Final graph after AD and optimization . 41
5.1. Rust implementation of Vola’s CSG-tree. 455.2. Segment tracing . 475.3. Rendering scenarios: Evaluations at rendering distance 485.4. Normal vector coloring . 495.5. Animation with time derivatives . 505.6. Sharpness based coloring operator . 515.7. Second order derivative artifacts. 52
A.1. Full Vola source code for the model in fig. 1.3. 72

66

List of Figures

A.2. Whole CSG-tree based Rust implementation . 73

67

List of Tables
2.1. Comparison of the techniques . 172.2. AD tool feature comparison . 26
5.1. Enzyme/Vola benchmarks . 43
A.1. List of selected AD tools . 70A.2. Forward execution of fsphere, followed by reverse accumulation, that producesthe derivative for each input. 71A.3. Raw benchmarking data. 71

68

A. Appendix

Notes on table 5.1 For each cell: left is the Enzyme and right the Vola measurement. Notethat Enzyme compiles to a Linux x86 dynlib, while Vola compiles to a WASM module whichexplains the difference in codesize. Also note that the runtime of the generated code is di-minishing small. We instead opt to running each module 1000 times, and provide the averagetiming.

69

A. Appendix

Name Description
ADOL-C [111] C++ based library, developed since at least 2003. Someresearch papers extend ADOL-C with custom solutions.
Aesara [21] Tensor library for the Python eco-system. Based onTheano.
AutoDiff [71] Lightweight C++17 library.
Autograd [78] Python and Numpy library. Used in Pytorch, JAX and otherhigher-level ML tools.
Casadi [2] C++ library from the mathematical computing community.In develop ment since at least 2019. Used in computer al-gebra systems with custom CasADi syntax.
CLAD [109] Library for C++ code, implemented as Clang compiler plu-gin. In development since at least 2015.
DiffSharp [6] F# library that follows PyTorch’s naming convention. In de-velopment since at least 2014.
Enzyme [90] LLVM-IR transformation based AD tool. Implemented formultiple languages that use LLVM as a compiler backend,like C/C++, Swift, Julia, Rust, Fortran and more.
ForwardDiff [97] Light forward-mode library for Julia.
JuliaDiff Collection of several AD related libraries and tools in the Ju-lia community. The packages are heavily intertwined, whichis why we treat them as one.
Minkowski Engine [12] Nvidia library for sparse tensor AD. Slow but steady devel-opment since 2021, first mentioned in 2019.
PyTensor [22] Python based tensor library with AD capabilities. Exposesthe underlying computational graph at runtime. Fork of Ae-sara.
TensorFlow [80] ML framework with Python and C++ API.
Zygote [51] Julia based AD library. Used in the Flux programmingframework. Acts as a compiler plugin similar to Casadi.

Table A.1.: List of selected AD tools

70

A. Appendix

Forward Trace Reverse Adjoint Trace
v0 = 1 v0 = v3

∂v3
∂v0

= 0.134 ∗ 2v0 = 0.267

v1 = 2 v1 = v4
∂v4
∂v1

= 0.134 ∗ 2v1 = 0.535

v2 = 3 v2 = v5
∂v5
∂v2

= 0.134 ∗ 2v2 = 0.802

v3 = v20 = 1 v3 = v6
∂v6
∂v3

= 0.134 ∗ 1 = 0.134

v4 = v21 = 4 v4 = v6
∂v6
∂v4

= 0.134 ∗ 1 = 0.134

v5 = v22 = 9 v5 = v7
∂v7
∂v5

= 0.134 ∗ 1 = 0.134

v6 = v3 + v4 = 5 v6 = v7
∂v7
∂v6

= 0.134 ∗ 1 = 0.134

v7 = v6 + v5 = 14 v7 = v8
∂v8
∂v7

= 1 ∗ 1
2
√
v7

= 0.134

v8 =
√
v7 = 3.741 v8 = v10

∂v10
∂v8

= 1 ∗ 1 = 1

v9 = 1 v9 = v10
∂v10
∂v9

= 1 ∗ (−1) = (−1)

v10 = v8 − v9 = 2.741 v10 = y = ∂y
∂y = 1

Table A.2.: Forward execution of fsphere, followed by reverse accumulation, that produces thederivative for each input.

Compile time AD compile Runtime Codesize
Enzyme Vola Enzyme Vola Enzyme Vola Enyme Vola

Sphere
5.50s 207ms 2.50s 1.7ms 53µs 60µs 370.6kb 8.4kb
5.58s 262ms 2.54s 2.9ms - - 370.6kb 8.4kb
5.51s 225ms 2.51s 2.3ms - - 370.6kb 8.4kb

Union-Hard
5.62s 222ms 2.54s 1.8ms 57µs 60µs 371.1kb 67.6kb
5.51s 236ms 2.43s 2.8ms - - 371.1kb 67.6kb
5.61s 221ms 2.56s 2.0ms - - 371.1kb 67.6kb

Union-Soft
5.65s 225ms 2.54s 2.8ms 58µs 58µs 371.2kb 70.6kb
5.61s 224ms 2.56s 3.9ms - - 371.2kb 70.5kb
5.67s 219ms 2.53s 2.9ms - - 371.2kb 70.5kb

Blob
5.63s 225ms 2.61s 4.0ms 60µs 62µs 371.8kb 79.9kb
5.59s 229ms 2.65s 4.3ms - - 371.8kb 79.9kb
5.5s 230ms 2.7s 4.0ms - - 371.8kb 79.9kb

Table A.3.: Raw benchmarking data.

71

A. Appendix

module stdlib::prelude;

operation SetColor(col: vec3);
impl SetColor<sub> for Color3d(at) {
 col
}

define common(at: vec3, offset: vec3, time: s) {
 Subtract(){
 Intersect(){
 SetColor([1.0, 0.0, 0.0]){
 Box([0.5; 3])
 }
 }{
 SetColor([0.0, 0.0, 1.0]){
 Sphere(0.7)
 }
 }
 }{
 SetColor([0.0, 1.0, 0.0]){
 Union(){
 Union(){
 Cylinder(0.35, 1.0)
 }{
 Rot3dAxis([1.0, 0.0, 0.0], 3.141 / 2.0){
 Cylinder(0.35,1.0)
 }
 }
 }{
 Rot3dAxis([0.0, 1.0, 0.0], 3.141 / 2.0){
 Cylinder(0.35, 1.0)
 }
 }
 }
 }
}

export evalsdf(at: vec3, offset: vec3, time: s){
 csg myfield = common(at, offset, time);
 eval myfield.Sdf3d(at)
}

Figure A.1.: Full Vola source code for the model in fig. 1.3.

72

A. Appendix

#![feature(autodiff)]
use glam::Vec3;
///Traits as "concept".
pub trait Sdf3d{
 fn eval_sdf3d(&self, at: Vec3) -> f32;
}

//Note "Box" is taken, use cuboid
struct Cuboid(Vec3);
struct Sphere(f32);
struct Union{
 left: Box<dyn Sdf3d>,
 right: Box<dyn Sdf3d>
}
struct Offset{
 offset: Vec3,
 sub: Box<dyn Sdf3d>
}

impl Sdf3d for Cuboid{
 fn eval_sdf3d(&self, at: Vec3) -> f32 {
 let q = at.abs() - self.0;
 q.max(Vec3::ZERO).length() + q.max_element().min(0.0)
 }
}
impl Sdf3d for Sphere{
 fn eval_sdf3d(&self, at: Vec3) -> f32 {
 at.length() - self.0
 }
}
impl Sdf3d for Union{
 fn eval_sdf3d(&self, at: Vec3) -> f32 {
 let a = self.left.eval_sdf3d(at);
 let b = self.right.eval_sdf3d(at);
 a.min(b)
 }
}
impl Sdf3d for Offset{
 fn eval_sdf3d(&self, at: Vec3) -> f32 {
 self.sub.eval_sdf3d(at - self.offset)
 }
}

#[autodiff(autodiff_sdf, Forward, Dual, Dual)]
fn sdf(at: Vec3, res: &mut f32) {
 let csg = Union{
 left: Box::new(Offset{
 offset: Vec3::X,
 sub: Box::new(Cuboid(Vec3::ONE))
 }),
 right: Box::new(Sphere(1.0))
 };
 *res = csg.eval_sdf3d(at);
}

Figure A.2.: Whole CSG-tree based Rust implementation

73

		Dresden
	Tendsin Mende
	Masterarbeit Abgabe

