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Abstract—The reactor model is a model of computation for
concurrent systems that includes semantics for time to guarantee
deterministic execution of events. However, the guarantee of
determinism comes at the price of raising the complexity of
building a runtime scheduling algorithm that efficiently exploit
parallelism of real time systems. In this paper we propose a
methodology called “timing enclaves” for partitioning of reactor
programs written using Lingua Franca, a novel coordination
language that implements the reactor model. Timing enclaves
decouple the timeline of an application to use multiple schedulers
that allow parallel computation while preserving determinism.
We evaluate our approach on a baseband processing benchmark,
a complex use case with a high degree of parallelism and real-
time constraints. We show that our approach has performance
comparable to a prior asynchronous and nondeterministic im-
plementation while ensuring determinism.

Index Terms—Baseband processing, models of computation,
reactors.

I. INTRODUCTION

Cyber physical systems (CPS) integrate modern comput-
ing and network technologies with physical subsystems to
enable automotive applications, industrial automation, and
smart medicine. They pose a number of challenges regarding
concurrency, safety, and scalability. The physical component of
a CPS system imposes timing constraints not present in pure
information processing systems. The cyber component uses
programming abstractions that typically do not include timing.
However, since computation takes time, and it interacts with
the physical component, an effective model of computation
(MoC) for CPS should include a notion of time.

The reactor model [1] is a reactive MoC for CPS that
provides timing semantics and deterministic concurrency. It
is based on discrete-event systems where concurrent objects
called reactors communicate via timestamped events. The
semantics define a partial order for handling events. Devel-
oping runtime strategies for such systems presents two key
challenges: how to efficiently exploit the inherent parallelism
for multi-core execution, and how to ensure time-predictable
execution of real-time tasks. The Lingua Franca (LF) coor-
dination language is a recent framework that implements the
reactor model [2]. It provides a compiler and a runtime system.
The current LF runtime handles all events in timestamp order,
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where only logically simultaneous events can be executed in
parallel, and only if there are no dependencies between them.
Dependencies form a graph, and to simplify the dependency
analysis at runtime, a topological sort is performed at startup.
This approach, while efficient, inserts implicit timing barriers
that limit the amount of exploitable parallelism. Moreover,
timing barriers can introduce priority inversion because a
high-priority task may wait for an unrelated low-priority task
handling an earlier event.

LF has been tested on various benchmarks, showing that
a wide range of applications can be implemented determin-
istically without compromising performance [3]. However,
the benchmarks have a regular structure and homogeneous
execution times in relation to input data. Performance on real
applications may suffer compared to direct implementations
that ignore timing and determinism, as we will show.

In this paper we extend LF with timing enclaves, a mech-
anism that partitions LF programs into decoupled timelines.
Each partition is endowed with its own scheduler, reducing
the amount of implicit timing barriers and thus improving
parallelism. To achieve this, we propose coordination mecha-
nisms between timing enclaves for concurrent execution that
preserves determinism.

To understand how enclaves can improve the performance of
reactor programs, we first use synthetic examples that abstract
from common concurrency patterns. We then test the technique
on an open-source implementation of 4G baseband processing
system [4] that we port to LF. This is a real-life use case
with stringent real-time constraints that allows us to evaluate
strategies for using enclaves in a complex application.

The rest of the paper is structured as follows. Section II
introduces the reactor model and discusses prior runtime
management mechanisms. Section III shows limitations of the
current solutions and describes timing enclaves as a method
to exploit more parallelism in LF programs. Section IV in-
troduces the 4G baseband processing benchmark. We evaluate
our methodology in Section V followed by a discussion of
related work in Section VI. Finally, conclusions and future
work are discussed in Section VII.

II. BACKGROUND

This section provides an overview of the reactor model
and presents illustrative examples. We only focus on the979-8-3315-0457-1/24/$31.00 ©2024 IEEE



model elements that are relevant to the problems that we
address. A more complete description of the model is given
by Lohstroh [5].

A. The reactor model
The reactor model is an MoC where concurrent compo-

nents called reactors contain the following elements: reactions,
ports, connections, state variables, logical actions and physical
actions. A reaction defines a behavior that is triggered by
events. Reactions belonging to the same reactor are mutually
exclusive; they cannot be executed in parallel. Reactors can
also contain other reactors, which allows composing programs
in a hierarchical way. Logical actions are triggers produced
by reactions that schedule future events. Physical actions are
similar, but they are scheduled asynchronously from a context
outside the reactor program. The ports and connections allow
a reactor to send or receive events to or from another reactor.

Fig. 1 shows a reactor program with four reactors B, C, D,
and a top-level reactor A. Logical actions are represented as
triangles with ”L” and physical actions with ”P”. The clock
symbol represents a timer. A timer, like the one in reactor
B, is a trigger that produces events with a fixed period. The
circle and diamond symbols denote a startup and shutdown
triggers, respectively. These trigger reactions that are called
when the the program starts and terminates, respectively. The
dark grey chevron symbols represent reactions, which contain
imperative code in a target language (C, C++, Python, Rust,
or TypeScript, currently). The plain arrows represent port to
port connections while the dashed arrows are used to connect
all ports and actions that a reaction may have an effect on and
vice versa.
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Fig. 1: An example reactor program.

Therefore, the reactor model uses the concept of logical
time that is used to order events on a logical timeline [6]. The
reactor model assigns timestamps that impose a well-defined
order on events. Lingua Franca uses generalized superdense
representation of time [7]. Logical time is denoted by a tag
g = (t,m), where t is a time value, an integer representing
elapsed nanoseconds. The microstep m imposes an order on
events with the same timestamp. Tags with same time value but
different microstep are not considered logically simultaneous.
In the reactor model logical time does not increase during
execution of a reaction. Physical time, on the other hand, does
elapse. Logical actions allow to schedule events with a delay
d ∈ Z+ relative to the current tag g = (t,m); the tag of the
new event is defined by the tag delay function D, as follows:

D(t,m, d) =

{
(t,m+ 1) for d = 0

(t+ d, 0) for d > 0 .

Ports and connections impose ordering constraints on ex-
ecution of logically simultaneous reactions. The constraints
form an acyclic precedence graph (APG). Actions do not
imply a dependency because scheduling an action creates a
future event with a tag strictly greater than the current tag.
Fig. 2 shows the APG for the reactor program in Fig. 1. Solid
arrows represent connections while dashed arrows represent
the priority order for reactions within the same reactor.

A1

C1 C2

A2

B2

A3

B1

D1 D2

Fig. 2: Dependency graph of the example reactor program in
Fig. 1.

A scheduler for a reactor program only processes an event
with tag g if the current physical time is greater than the
timestamp of g. This induces an implicit physical time barrier.
The prior scheduler makes sure that all reactions in the current
logical time finish execution before advancing the logical time
to the next tag. However, it is possible that a computationally
heavy reaction finishes at a physical time that is much greater
than the logical time of the next tag. In this case, we say that
the logical time lags behind the physical tag.

Reactions may be annotated with a deadline and a deadline
handler. When a reaction is invoked, the runtime compares the
current physical time with the timestamp of the current tag. If
the difference is equal or greater to the annotated deadline, the
deadline handler is called instead of the reaction body. This
allows to easily detect and handle deadline violations.

B. Lingua Franca and its scheduler
The Lingua Franca (LF) coordination language implements

the reactor model. In LF, the execution of a reactor program is
managed by a runtime scheduler. The scheduler keeps track of
scheduled future events, controls advancement of logical time,
and invokes any triggered reaction.

To ensure determinism, the current LF runtime implemen-
tation uses a conservative approach that assigns levels to
reactions in the APG and allows parallel execution only for
reactions with the same level. An alternative would be to
use the APG at runtime to identify when a reaction is ready
for execution. The scheduler could walk the APG checking
whether all dependent reactions are either not triggered or
have completed executing. For large applications, however,
traversing the graph can be computationally expensive. The
conservative approach assigns a level to each reaction, where
the level is the length of the longest path from any root of the
graph to the reaction. For the example, in Fig. 2, the reactions
A1, C1, D1 and B1 will be at level 1, reactions A2, C2, D2



and B2 at level 2, and A3 at level 3. If two reactions have the
same level, they cannot have any dependencies on each other
and can safely be executed in parallel.

III. TIMING ENCLAVES

In this section, we use synthetic examples to show that
it is possible to find better solutions that efficiently exploit
parallelism without incurring a large overhead.

A. Problem analysis: The tag barrier
Consider the program in Fig. 3. In this program, new data

is generated in the source actor every 10 ms and passed to a
pipeline of reactors. Fig. 4 shows the resulting APG for this
program. Given the connection between reactors, every reactor
is assigned a different level, which means that the execution
is strictly sequential.

Cascade

source : Source

(0, 10 msec)

stage1 : Stage stage2 : Stage stage3 : Stage sink : Sink

Fig. 3: A simple pipeline of reactors.

source stage1 stage2 stage3 sink

Fig. 4: APG for the simple pipeline of reactors.

Fig. 5 shows a timing diagram for the application in Fig. 3,
with the physical time in the x-axis and logical time in the
y-axis. Because logical time does not elapse as a reaction
executes, reactions are logically instantaneous. The diagonal
line represents the physical time barrier imposed by the model,
where events are only scheduled if the physical time is equal
or greater than the logical time. Ideally, it should be possible
to exploit pipeline parallelism. However, the scheduler only
advances to the next tag once all reactions at the current tag
have been executed. In contrast, Fig. 6 shows an execution
that exploits available parallelism.
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Fig. 5: Timing diagram for a simple pipeline of reactors with
LF scheduler.

One possible solution to increase the parallelism of the
example in Fig. 3 is to leverage LF’s timing semantics to add
logical delays between the stages as shown in Fig. 7. Adding
a delay to a connection schedules a future event with a given
offset. For example, the reaction in stage1 will be scheduled
with an offset of 10 ms in logical time after the tag of reaction
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Fig. 6: Ideal timing diagram for a simple pipeline of reactors.

in source. This solution breaks the dependency of reactions
in the APG, leading to all reactions sharing the same level.
In this way all reactions can execute in parallel. However,
this approach requires that delays between stages are chosen
carefully to always match the production rate, which is not
always easy and impossible at times.

Pipeline

source : Source

(0, 10 msec)

stage1 : Stage stage2 : Stage stage3 : Stage sink : Sink

10 ms 10 ms 10 ms 10 ms

Fig. 7: A simple pipeline with delays in between stages.

B. Problem analysis: The level barrier
Consider now the program in Fig. 8. Here, the source reactor

distributes the generated data to two parallel computing paths.
The upper path, (stage1 and stage3), does not have any
data dependency with the lower path, (stage2 and stage4),
and thus the paths could execute in parallel. Due to the
level-based scheduling approach, the runtime would schedule
stage1 in parallel to stage2 because they have the same
level. However, the scheduler will proceed to execute stage3
and stage4 in parallel only after both stage1 and stage2
have finished the execution. This works well as long as the
stages have a similar execution times and the entire execution
can keep up with the physical time barrier.

Parallel

source : Source

(0, 30 msec)

out
stage1 : Stage

in out

stage2 : Stage
in out

stage3 : Stage
in out

stage4 : Stage
in out

sink : Sink
in

Fig. 8: An LF program with two parallel compute paths.

In Fig. 9 we see how variability in execution times creates
gaps in the schedule. The example shows that, with variable
execution times, the level-based scheduler may lead to inter-
ference between reactions that do not depend on each other,
and the logical time might lag behind the physical time as a
consequence. Fig. 10 shows an ideal timing diagram for the
same program without scheduling gaps. Also here we could
consider adding delays between stages, in a similar way to the
example in Fig. 7. However, it would be inefficient because it
imposes a static delay to a variable execution time.

A possible solution would be to replace the level-based
scheduler and the tag barrier with more elaborated topological
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Fig. 9: Timing diagram for the program in Fig. 8.
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Fig. 10: Ideal timing diagram for the program in Fig. 8.

sorting algorithms that are able to execute reactors with differ-
ent tags in parallel and are capable of identifying reactions that
are ready for execution without relying on levels. However,
deriving such solutions is challenging [5]. On the other hand,
having a-priori knowledge of the application might be useful to
propose tailor-made strategies to traverse the APG efficiently.
However, this would add an extra burden to programmers as
this requires time debugging and a deep understanding of the
application. Moreover, the resulting strategy would be useful
for a family of problems and not for the general case.

C. Timing enclaves

Rather than devising new scheduling and graph traversal
algorithms, we propose to partition the program and endow
each partition with a scheduler using the tag and level barrier
approach. We call these partitions timing enclaves because
their timelines are decoupled; i.e., each enclave keeps track
of its own logical time. This decoupling makes it possible
to execute more reactions in parallel, because timing barriers
become local to each enclave.

Partitioning is a common practice across programming
models. In the particular case of the reactor model, care must
be taken to ensure that a partitioned LF program preserves
the semantics of the original one. In particular, mechanisms
are needed to retain a time-deterministic execution by im-
plementing signaling between timing enclaves. This signaling
coordinates the advancement of logical time in the different
enclaves.

We have explained how the physical time barrier is used to
control the advancement of logical time. In the LF runtime,
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Fig. 11: Timing diagram for the example in Fig. 3 when using
enclaves.

the scheduler has to wait for all reactions at a current tag to
finish execution before advancing the logical time. We follow
a similar approach to synchronize across timing enclaves by
introducing a logical time barrier for entire enclaves. More
precisely, a downstream enclave waits for upstream enclaves
to release a tag before locally processing the reactions at that
tag. By releasing a tag, an upstream enclave signals that it will
only produce new events with a later tag. To implement this,
before processing a tag, the scheduler of a timing enclave
will block, awaiting a tag release from all external inputs,
then process the tag locally, and finally release the tag on
all outgoing connections. Fig. 11 shows the decoupled timing
diagrams of the pipeline shown in Fig. 3 when using enclaves.

Enclaves

Upstream

(0, 200 msec)

Downstream

(0, 100 msec)

1 2

Fig. 12: An example program with two enclaves.

While the methodology described above enforces a deter-
ministic execution, it may still lead to a significant lag on
downstream enclaves. Consider the example in Fig. 12, which



contains two reactors. The castle symbol indicates that both
reactors are enclaves. Reactors Upstream and Downstream
have a timer that triggers at intervals of 200 ms and 100
ms, respectively. Every time the upstream enclave processes
a reaction, it notifies the outgoing connection to release the
tag on the logical time barrier, which in turn is acquired by
the downstream enclave. Fig. 13 shows the timing diagram
for this example. The figure includes vertical lines to mark
the physical times at which Downstream acquires a tag and
Upstream releases a tag. (These vertical lines carry no meaning
on the axis of logical time.) The figure also shows the physical
time at which the reactions are triggered. Downstream 1
and Downstream 2 refer to the execution of the reactions
1 and 2 of the Downstream enclave, respectively. As can be
seen, the reaction triggered by Downstream’s timer is executed
with a significant lag at tags (100ms, 0) and (300ms, 0). This
is because the upstream enclave only releases a tag after it has
completed processing it. Thus, the downstream enclave does
not receive any notifications for tags for which there is no
event scheduled in the upstream enclave. Because Upstream
has no event scheduled at (100ms, 0), Downstream has to wait
until it receives the release for the tag (200ms, 0) before it can
process the tag (100ms, 0).

acquire release Upstream Downstream 1 Downstream 2

(0, 0)

(100ms, 0)

(200ms, 0)

(300ms, 0)

(400ms, 0)

0 100 200 300 400
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(0, 0)

(100ms, 0)

(200ms, 0)

(300ms, 0)

(400ms, 0)

0 100 200 300 400
physical time (ms)

lo
gi

ca
l t

im
e

Downstream

Fig. 13: Timing diagram for the example in Fig. 12 using a
naive coordination scheme.

To avoid downstream enclaves waiting indefinitely for a
release at a given tag, the downstream enclave notifies the
upstream enclave of its request to acquire a certain tag. In this
case, the upstream enclave inserts an empty event in its local
event queue if there is not already an event scheduled for this
tag. An empty event denotes an entry in the event queue at
a specific tag without any associated reactions. Upstream will
acquire the tag from all its connections and, since the event

is empty and no reactions are triggered, immediately release
the tag. This protocol ensures both determinism and timely
execution. Fig. 14 shows the timing diagram of the previous
example with the described methodology.
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Fig. 14: Timing diagram for the example in Fig. 12 using the
complete coordination scheme with empty upstream events.

The presented approach is useful to overcome the con-
straints imposed by the tag barrier and level barrier for a
large set of use cases, especially for programs with an acyclic
structure. Programs with cycles, however, remain problematic.
Let us assume an application with 2 enclaves, A and B,
interconnected in a zero-delay cycle; i.e. there is a connection
from a A to B, and one from B to A, both without delays. In
this case, as A and B have separate schedulers, A will try to
acquire the startup tag from B, which in turn would acquire
the same tag for A. The execution immediately deadlocks. A
solution is to break the zero-delay cycle by adding a logical
delay d on the connection from B to A. This avoids the
deadlock, but suffers from poor performance and changes the
logic of the program. If A wants to handle an event at tag t
it must acquire the tag t − d at B. But for B to release tag
t− d it must first acquire it at A, which in turn must acquire
t − 2d from B. This goes on until they reach the previous
completed tag. Future work will focus on extending the current
methodology to make the program aware of the presence of
cycles and develop strategies to handle them. Fortunately, there
are many applications without cycles, including the use case
studied next, that can benefit from timing enclaves.

IV. USE CASE: BASEBAND PROCESSING

As discussed in Section I, we use baseband processing in
4G/5G networks as a strong use case to demonstrate our timing
enclaves and how different partitions impact performance. This



case study contributes a software-based implementation, as
required by the current trend towards virtual radio access
networks (VRAN) [8]. Moreover, our model-based approach
responds to challenges identified by Wittig et al. [9] to cope
with the highly time-varying workloads and stringent time-
constraints of 4G/5G networks. In this section, we explain the
main relevant features of the use case and briefly discuss our
implementation in LF.

A. 4/5G in a nutshell

Baseband processing for modern cellular networks is char-
acterized by complex signal processing algorithms. The latest
standards add on top highly heterogeneous traffic, including
enhanced mobile broadband (eMBB), ultra-reliable and low-
latency communication (URLLC), and massive machine-type
communication (mMTC) [10].

In uplink communication, a base station allocates a fre-
quency band to every user equipment (UE). Frequency is
always allocated in blocks of a basic resource unit known as a
physical resource block (PRB). Given the spectrum flexibility
of 5G, The allocated frequency band might change according
to the user needs. Every millisecond a new set of UE requests
is received at the base station in a subframe.The multiple-input
and multiple-output (MIMO) [11] technique is used to increase
the data rate. It allows the UEs to transmit independent
streams of information, also known as layers, to increase the
channel capacity. Moreover, depending on the signal quality,
the UEs might apply different modulation schemes to improve
the spectral efficiency. Baseband processing is therefore a
demanding task where the base station has to recover multiple
independent streams of data coming from different UEs and
apply different decoding algorithms to each of them.

Additionally, according to the current standard, the deadline
for processing a subframe is 2.5 milliseconds [12].If the
subframe processing time exceeds this threshold, it will be
discarded, resulting in packet loss. Such loss compromises the
ability to offer reliable quality of service that is essential for
latency-critical applications.

B. Reference implementation

We use the open-source LTE PHY benchmark [4] as a
reference for our work. The implementation provides a re-
alistic model of a base station that exposes the parallelism of
the algorithms and captures the dynamic behavior of mobile
workloads. Fig. 15 shows the cascade of signal processing
kernels included in the benchmark. The PHY benchmark is
modular, such that kernels can be replaced to investigate
new algorithms and optimization techniques. The execution of
concurrent kernels is parallelized using a customizable number
of worker threads and a work-stealing runtime [13]. The model
can be parallelized over the number of users and, for the
highlighted tasks in Fig. 15, within a single user. The degree of
exploitable parallelism depends on a set of dynamic and static
parameters like the number of antennas in the base station,
which is a fixed number in every base station, and the number
of layers sent by a UE through MIMO, which depends on the
specific UE device.

The execution of the LTE PHY benchmark proceeds as
follows: At every subframe (i.e. every 1 millisecond), a new

Channel estimation

Input
data

Matched
filter

IFFT Windowing FFT Combiner
weights

Antenna
combining

IFFT Deinterl. Demap Turbo
decoding

CRC Output
data

Symbol

Fig. 15: Block diagram of the LTE PHY benchmark baseband
receiver for a single UE request.

set of randomly parameterized UE requests is generated to
emulate the incoming workload. The requests are organized
in a user queue. Idle worker threads look in the user queue
and take the next UE to be processed. Every time a UE is
dequeued, the respective thread fills a local task queue with
the processing kernels while respecting the pipeline order. If
the user queue is empty, the idle threads will look into the
progress of the other threads and will steal tasks that can be
executed in parallel. The complexity of real-time requirements
as well as the heterogeneity of the workloads, makes this use
case well-suited to stress our timing enclaves design.

C. The LF implementation
We ported the PHY benchmark to LF, as shown in Fig. 16.

Our LF implementation has a customizable number of parallel
reactors called user managers. Every user manager contains
a chain of reactors, where every reactor represents a kernel
of the PHY benchmark. Additionally, we include a workload
dispatcher reactor that simply takes the input data and dis-
tribute it to a set of parallel kernels. The workload manager
generates new user requests every 1 ms and sends them to the
user managers in a round-robin fashion. Although, the original
PHY benchmark is written in C language, we used the C++
target of LF, as it is designed for efficiently exploiting parallel
hardware [3]. We compile the kernels of the benchmark with
a C compiler and link them from the C++ code.

V. EXECUTION ANALYSIS

We have described timing enclaves as a mechanism for
partitioning reactive systems. However, finding the best parti-
tion for a program is a nontrivial task, especially considering
the complexity of the baseband use case. In this section, we
leverage our knowledge of the baseband processing use case
and propose multiple partition strategies that help expose the
trade-off space exposed by timing enclaves.

The pipeline parallelism of the LTE benchmark would lead
to problems similar to the example in Fig. 8, where parallel
pipelines will be stalled due to long execution time in one
of the reactions, even if they do not have data dependencies.
Notice that given the large number of reactors, it is not possible
to explore the whole search space. Instead, we propose a set
of intuitive solutions that can give us a hint of the potential
gain of a given partitioning strategy.

• enclaves1: The first proposed solution is to decouple
the timeline between pipelines and make every pipeline
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Fig. 16: Reactor implementation of the PHY benchmark.

(or user manager) an enclave. Notice that we fixed the
number of user managers to 10, which corresponds to
the maximum number of user requests per subframe
according to the LTE standard.

• enclaves2: Implementation where one enclave is
shared by every pair of user managers. This version
contains half of the enclaves compared to enclaves1,
but every enclave handles double the workload. The idea
is to evaluate whether the overhead introduced by the
coordination mechanism between enclaves is significant
compared to the potential gain of timeline decoupling.

• enclaves3: As every user manager contains eight
different types of kernels, some of them with multiple
parallel instances. This variant breaks every pipeline into
eight enclaves, with every kernel of the same type in one
enclave.

• enclaves4: We leverage some prior knowledge about
the application and identify the computationally heaviest
kernels. We define an implementation where we split ev-
ery pipeline into 4 stages in such a way that the execution
time on each of the stages is similar. The first stage
includes the workload dispatcher and channel estimation
reactors. It is followed by a stage with combiner weights,
which is the most intense kernel, as the only reactor. The
third enclave includes all the parallel symbols reactors.
Finally, we combine deinterleave, demap, turbo decoding,
and CRC reactors into a single enclave.

• enclaves5: We generate a set of enclaves that are
shared across multiple user managers. All kernels of the
same type for all user managers are grouped in the same
enclave, i.e. all workload dispatchers will be placed in
the same enclave.

• enclaves6: Finally, given that there is also parallelism
within the pipelines, we evaluate a version where every
reactor is an enclave. By declaring every reactor as an
enclave, we maximize the decoupling of components
because reactors operate independently from each other.
This leads to the highest amount of potential parallelism.

Table I summarizes the proposed implementations with their
corresponding number of enclaves. The table also includes the
original LTE PHY benchmark, PHY, and the implementation
in LF without enclaves, reactors. Both of them can be
seen as if they have one enclave because they have a single
timeline.

For the evaluation, we generate workloads (traces of sub-
frames) according to realistic traffic profiles. Concretely, we
use a profile from a dense urban area during a day, using the
methodology in [14].We generate 10,000 subframes, equiv-
alent to 10 seconds, of traffic traces for low, medium, and

TABLE I: Number of enclaves for each implementation.

Version Number of enclaves

PHY 1
enclaves1 10
enclaves2 5
enclaves3 80
enclaves4 40
enclaves5 8
enclaves6 460
reactors 1

high traffic, which correspond to the lowest, mid, and highest
traffic hours, respectively. A realistic traffic scenario presents
a heterogeneous workload where some of the subframes are
empty, while other subframes might contain a heavy load of
multiple users, each of them characterized by a different set of
baseband parameters like the number of PRBs and modulation
scheme. For evaluation, we use an Intel(R) Core(TM) i7-6700
CPU with 4 cores and 8 total treads, at 3.40GHz working
frequency.

Fig. 17 shows the number of missed deadlines for the
different implementations for the described traffic scenarios.
The plot shows that enclaves6 gives the worst performance
out of all implemented versions, including the version without
enclaves. Making every reactor an enclave comes at the price
of adding significant overhead for coordinating the individual
reactors. enclaves1 gives the best performance out of all
LF implementations and it performs also better then PHY for
a low-traffic scenario. PHY on the other hand, presents a lower
number of missed deadlines for medium and high traffic.
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Fig. 17: Data traffic generated in a base station during a day.

Finally, we leverage the reactor model’s timed seman-
tics to add deadline management. By adding deadline man-
agement, we can drop jobs early that do not meet the



deadline, which frees up resources for the other jobs. For
this, we take the implementation with reactors with the
best performance (enclaves1) and generate a new ver-
sion with deadline management enclaves1_deadline.
Fig. 18 shows the number of missed deadlines for PHY,
enclaves1, enclaves1_deadline, and reactors.
The enclaves1_deadline version presents a lower num-
ber of missed deadlines for low and medium-traffic scenarios.

This evaluation shows how enclaves can help bridge the
performance gap between a non-deterministic implementation
(PHY) and a deterministic one (reactors) for a challenging,
time-varying workload. It also exposes the trade-off space
opened up by different timing enclaves. Exploring this au-
tomatically is an interesting avenue for future work.
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Fig. 18: Data traffic generated in a base station during a day.

VI. RELATED WORK

Dataflow MoCs like synchronous data flow (SDF) [15] or
Kahn process networks (KPNs) [16] have been used success-
fully to express concurrent computation in telecommunication
applications. Both models ensure a deterministic execution
while exploiting pipeline and data parallelism. Design space
exploration tools such as PREESM [17], MAPS [18], Mo-
casin [19] and Sesame [20] allow to efficiently map the
application to heterogeneous hardware. With respect to the
requirements of modern telecommunication workloads, SDF
and KPN have two major limitations. First, they don’t provide
a timed semantics that allows to reason about the real-
time requirements of different independent computations in
the system. Second, they cannot easily model dynamic and
reactive behavior, such as reactions to spontaneous inputs and
adaptations of the application.

The lack of dynamicity in SDF and KPN is commonly
addressed by switching to a more permissive model like
Hewitt actors [21], general asynchronous message passing
paradigms, or general task models. However, if we use such an
asynchronous model, we lose the determinism guarantee and
still lack a timed semantics [22]. The reactor model promises
to close the gap between static deterministic models and more
dynamic approaches [1] (see Section II-A). While reactor
programs are also represented as a static graph, the model
also defines mutations that allow modifications of the graph
during execution.

The logical execution time (LET) model, which can be
traced back to the time-triggered language Giotto [23], is a
related approach that is gaining popularity in the automotive

sector and was recently included in the AUTOSAR stan-
dard [24]. In LET, a logical execution time is assigned to
all tasks. If a task finishes its computations earlier than its
logical execution time, it will delay its outputs. This enables
a deterministic composition of dependent tasks. System-level
LET (SL-LET) [25] is a recent extension to LET, introducing
Time Zones and interconnecting LET, enabling the modeling
of distributed systems. In LF, LET can be modeled using
delayed connections. Timing enclaves represent an efficient
way of utilizing the parallelism exposed by LET, enabling
both multicore and real-time scheduling of LET programs.

Authors in [26] propose an approach for coordination across
multiple timelines through federated execution. This work
targets distributed execution of reactors by using two schemes,
one centralized and one decentralized. The centralized system
has a runtime infrastructure (RTI) process responsible for
coordinating the advancement of logical time of the nodes, also
called federates, each of which executes in its own process. To
ensure correctness, all messages exchanged between federates
must pass through the RTI. The decentralized system avoids
this bottleneck and allows for peer-to-peer communication
between the federates. However, it is based on Ptides and
requires known bounds on the apparent latency between the
federates to deliver determinism. Timing enclaves resemble
federates, but they execute within a single process using peer-
to-peer communication and coordination. Using the logical
time barriers, they achieve determinism without any assump-
tions on apparent latency. In future work, these techniques may
be combined to coordinate cycles of timing enclaves.

VII. CONCLUSIONS AND FUTURE WORK

We have presented timing enclaves, a mechanism for par-
titioning a discrete-event system into multiple enclaves with
decoupled timelines. Our approach exposes more parallelism
compared to prior work, both within a logical tag and across
tags. Timing enclaves significantly outperform prior schedul-
ing approaches on a realistic 4G/5G workload. The results are
comparable to nondeterministic programming models like the
original task-based model used in the PHY benchmark. Future
work will focus on extending the presented work to consider
better mechanisms for analyzing LF programs and prompting
users with useful feedback that allows them to make educated
decisions on how to partition the program. Additionally, we
plan to develop tools that automatically explore the design
space of possible solutions and utilize heuristics to identify
solutions that are near optimal regarding certain constraints.
This is particularly interesting in the context of heterogeneous
systems in the compute continuum [27], [28].
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