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Abstract—Computing-in-memory (CIM) promises to alleviate
the Von Neumann bottleneck and accelerate data-intensive ap-
plications. Depending on the underlying technology and configu-
ration, CIM enables implementing compute primitives in place,
such as multiplication, search operations, and bulk bitwise logic
operations. Emerging nonvolatile memory technologies such as
spintronic Racetrack memory (RTM) promise not only unprece-
dented density but also significant parallelism through CIM.
However, most CIM designs, including those based on RTM,
exhibit high fault rates. Existing error correction codes (ECC)
are not homomorphic over bitwise operations such as AND and
OR, and hence cannot protect against CIM faults. This paper
proposes CIRM-ECC, a technique to protect spintronic RTMs
against CIM faults. At the core of CIRM-ECC, we use a recently
proposed RTM-based CIM approach and leverage its peripheral
circuitry to our implement our novel ECC codes. We show that
CIRM-ECC can be applied to single-bit Hamming codes as well
as multi-bit BCH codes.

Index Terms—Racetrack memory, computing in memory, fault
tolerance, error correction codes

I. INTRODUCTION

Computing-in-memory (CIM) has emerged as a promis-
ing approach to mitigate the Von Neumann bottleneck in
traditional computing architectures [1]. Most CIM solutions
utilize memory devices and their sensing circuits as processing
elements. In particular, proposals that leverage DRAM [2], [3]
and various non-volatile memories (NVMs) [4], [S] employ
triple row activation or specialized access mechanisms to
implement logic and arithmetic operations across rows of
memory. The accuracy of these computed results often relies
on the accuracy of the sensing circuits, as CIM significantly
reduces the sensing margins, potentially resulting in high fault
rates, such as 10~! [6] in a recently proposed DRAM-based
CIM accelerator.

Racetrack memory (RTM) is an emerging NVM that offers a
promising alternative to other NVMs and traditional memories
such as SRAM andDRAM [7]. Like other technologies, RTM
facilitates in-place execution of logic and compute opera-
tions [5], [8], [9]. CIM in RTM can be performed using
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different cell attributes, for example, using the resistance state
of the access ports [10] or multi-cell access mode called
transverse read (TR) operation. TR counts the number of
‘I’s across all operands. This enables parallel computation of
bitwise operations such as AND (NAND), OR (NOR), and XOR
(XNOR). TR accuracy is highly dependent on the precision of
the sense amplifier precision due to the narrow sensing margins
required to detect the difference between each possible count
of ‘I’s [11], [12].

Despite the efficiency of high-density error correction codes
(ECC) in protecting memory against individual row faults and
chip failures (e.g., Chipkill [13]), codes like Hamming [14]
(ECC-1) and BCH [15] (ECC-2 and higher) cannot protect
AND and OR operations. These fundamental operations are
frequently employed in CIM accelerators [2]-[5] but do not
generate homomorphic ECC codes. Consequently, when mem-
ory rows containing ECC parity bits are used to execute these
bulk bitwise operations, there is no straightforward method to
similarly combine the parity bits to ensure protection of the
resultant values.

Currently, the leading method of protecting CIM operations
is to use n-modular redundancy, which requires n copies of
the computation to determine the correct result [2], [S]. The
value of n depends on theintrinsic and acceptable fault rates.
However, this approach divides the potential parallelism of the
CIM device by a factor of n (either spatially or temporally),
greatly limiting the performance benefits of CIM.

In this paper, we propose CIRM-ECC, or Computing In
Racetrack Memory—Error Correction Coding, to protect trans-
verse read-based CIM operations in RTMs. Many ECC meth-
ods, including Hamming and BCH codes, are homomorphic
over XOR. Thus, two memory rows, data and parity bits for
traditional ECC, may be combined with an XOR operation
while maintaining data protection. Other logic operations, such
as AND and OR, can be protected by concurrently computing
XOR. ECC applied to the XOR function can detect faults, cor-
rect faults, or, in some cases, determine that the computation
was error-free in the primary operation (e.g., AND). This is
possible because TR outputs a count of the number of ‘I’s.
Faults in a TR will only increase/decrease the ‘1’s count by
one. Because bulk bitwise operations are determined by this
‘1’s count and a small amount of additional logic, the output
of XOR will switch odd/even parity, which we leverage to
protect other logic operations. We demonstrate that CIRM-
ECC significantly reduces performance and energy overhead
compared to existing n-modulo-redundancy-based approaches,
while achieving comparable uncorrectable fault rates.
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Fig. 1: RTM overview. &) RTM nanowire showing access ports
and associated circuitry, () Hierarchal organization, () DBC
structure, showing M nanowires each storing 32 data bits,
®) Senseamp circuitry for RTM-based CIM; adopted from
CORUSCANT [5] for TRD = 3.

II. BACKGROUND AND RELATED WORK

RTM is a spintronic NVM wherein each cell is a magnetic
nanowire capable of storing tens of data bits and is equipped
with one or more access ports, as shown in Fig. 1A. During
read/write operations, the desired data must be shifted to
the nearest access port by applying a shifting current to an
extremity of the nanowire. The access ports typically consist
of an access transistor and a magnetic tunnel junction (MTJ)
formed with a fixed layer adjacent to one domain of the
nanowire serving as the free layer. The alignment of the data
with respect to the MTJ determines the bit value of the data,
‘0 or ‘1.

RTMs are hierarchically organized into ranks, banks, and

subarrays. Each subarray is separated into independently ac-
cessible groups called domain-wall block clusters (DBCs)
(Fig. 1B). DBC nanowires are shifted in a lock-step fashion
(see Fig. 1C). Data are bit-interleaved across nanowires, allow-
ing access to a data word in parallel. Fig. 1B shows a 512 x M
bit subarray with 16 DBCs where each DBC is composed of
M 32-bit long RTM nanowires.
CIM using RTM: Each nanowire can also function as a
polymorphic gate across multiple bits accessed as a count
of the ‘I’s (or ‘0’s) within a portion of the nanowire. Two
methods, TR [16] or a multi-domain MTJ [11] allow this.
The leading CIM method [5], [9] to compute bulk-bitwise
logic leverages the TR operation'. A TR is conducted between
two access ports, or an access port and an extremity, for all
nanowires within a DBC, as shown by the red arrow in Fig. 1
part C. Note that TR is constrained by the distance between the
ports, referred to as the transverse read distance (TRD), with
TRD < 7 [5], [11]. Different ‘1’s counts are determined by
comparing the sensed voltage/current with fixed thresholds.
This can be used to compute bitwise logic operations and
multi-operand addition and multiplication for integers [5], and
floating point values [9].

TR reports an approximate 3% difference in resistance
under process variation [16]. Using the LLG micromagnetic

IRTM CIM [5], [9] conceptually is compatible with either TR [16] or a
multi-domain MTJ [11], we presume TR for the remainder of this paper.

Fig. 2: Example of 3-Input AND and OR Computations in RTM
with Ambiguous Fault Locations Outlined

simulator [17] to verify the TR sense margins [16], the fault
rate for a TR operation is reported to be around 106 for
TRD=4. Compared to DRAM-based CIM, this rate is much
lower but still requires protection [3]. Although there are ECC
schemes for CIM in memristor technology [18]-[21], they are
not applicable to RTM. The state-of-the-art RTM-based CIM
designs utilize redundancy and voting [5].

III. CIRM-ECC: PROTECTED RTM-BASED CIM

Fig. 2 illustrates an example of an AND operation using three
operands (A, B, C). At each bit position, the TR output at the
corresponding senseamp can be 0-3 ‘1’s, depending on the
operands’ bits. The output of the AND operation is ‘1’ when
the TR = 3, as all operands are ‘1’ (rightmost bit position).
Similarly, OR is ‘1’ for TR > 1 (all but the leftmost position).

Next, we show how faults arise in AND and OR operations
and are detected and corrected using the XOR operation.

A. XOR computation and homomorphism over ECC

Fig. 1D shows the sensing and logic circuitry for TRD =
3. While AND and OR detect their result from the sensing
extremities, XOR is a function of all sense results. Since many
ECC schemes, including Hamming, Huffman, Reed-Solomon,
and BCH codes, are homomorphic over XOR, the XOR of any
two ECC codewords is a valid codeword for the XOR of the
two corresponding data words. Therefore, a fault in the XOR
operation can be detected and corrected with traditional ECC
hardware. In this work, we leverage this property to protect
other logic operations.

In addition to its compatibility with existing ECC codes,
XOR is useful because of its ability to always detect single-
level sensing faults. A sensing fault reports a different number
of ‘I’s than stored in the nanowire segment, and is dominated
by counts of +1. These single-level faults will flip the result
of XOR. Larger distance faults (two-level and up) are expo-
nentially less likely than single-level faults. Thus, correcting
single-level faults is the focus of CIRM-ECC.

B. Fault handling in non-XOR logic operations

In many cases, faults detected by XOR will also show up as
errors in other CIM operations. However, there are instances
where an faults detectable through XOR do not create errors
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in other CIM operations. Depending on the sense level and
whether a fault is detected through XOR it may be possible
to infer that the flip will or will not affect the result of AND
and/or OR operations. In other cases, it cannot be known if
the fault led to a error. Thus, sensing faults detected by XOR
can lead to deterministic errors, deterministic non-errors, or be
ambiguous faults. Deterministic cases can be directly corrected
or left alone, while ambiguous cases must be recomputed.

Considering the CIM circuit in Fig. 1 part D and our three-
operand example in Fig. 2, if the senseamp detects a fault
and reads zero ‘1’s, the correct count must be one ‘1°. This
is a deterministic error for OR, such that the result can be
corrected from ‘0’ to ‘1’. It is a deterministic non-error for
AND such that the ‘0’ result remains unchanged. Thus, this
fault can be directly corrected (if needed) so that we return
the correct value. However, if the senseamp falsely produces a
single ‘1’ as output, the XOR output will report a fault, but it
is unclear whether the correct count was zero ‘1’s or two ‘I’s.
In this case, the AND result remains a deterministic non-error
returning a ‘0’ result. However, for the OR operation it would
not be possible to infer the correct result (an ambiguous fault)
as zero ‘I’s is a possibility and would return a ‘0’ instead of
‘1’ requiring the CIM operation to be conducted again.

Fig. 2 shows the type of fault for each possible senseamp
reading with three operands. For the AND operation, the
XOR fault is ambiguous when two ‘1’s are reported, while
all other cases are not errors for AND, as the output must
be ‘0’ regardless. Similarly, for the OR operation, the fault
is ambiguous when reporting a single ‘1’. Generally, for n
operands, a fault is ambiguous for AND when the senseamp
reports n—1 ‘1’s and for OR when it reports a single ‘1’. These
cases are highlighted with red circles in Fig. 2. Deterministic
errors occur when a fault is detected for AND when sensing
n ‘1’s and for OR when sensing zero ‘1’s. Single-level faults
will not affect AND when sensing fewer than n — 1 *1’s and
OR when sensing more than a single ‘1’. Ambiguous faults
must be recomputed.

C. Fault rates calculation

To show the effectiveness of CIRM-ECC, we calculate the
fault rates for AND and OR operations based on the rate
of single-level sensing faults. For each operation, there are
two sensing fault possibilities: falsely reading too many ‘1’s,
and falsely reading too few ‘1’s. However, for AND and OR
operations, there are only limited cases where a fault translates
into an error. For AND if an input of n ‘1’s is read as too few
‘I’s and if an input of n — 1 ‘I’s is read as too many ‘I’s.
OR is the same except with ‘0’s. If the data follow a uniform
distribution (each input is equally likely) then for each fault
there is a % probability that a fault will appear as an error for
AND or OR and, by extension, NAND or NOR. Thus, the fault
rate P for different operations can be represented by Eq. 1
where P(XOR) is the probability of a single-level sensing fault.

P(XOR)

P(aND) = P(OR) = -

(D

These bit-level fault rates can easily be extended to word-
and row-level fault rates by modeling the fault of each bit as

-1 & O No ECC (A)
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Fig. 3: Comparison of analytical (A) error rates and RTSim
(S) error rates for AND-OR operations.

an independent event. However, for detection and correction
it is necessary to use P(XOR) as all single-level faults appear
as flips regardless of whether they are a fault in AND or OR.
Thus, the uncorrectable fault rate can be approximated by a
binomial distribution of P(XOR) and the detection/correction
capability of the ECC scheme. Because not every sensing fault
results in an error, the binomial distribution formula represents
a worst case uncorrectable error rate for CIRM-ECC based on
the ECC scheme applied.

IV. EVALUATION

This section provides an evaluation of CIRM-ECC for
different initial fault rates and a comparison with existing non-
protected and modular-redundancy-based protection schemes
both with stochastic inputs and representative workloads.

A. Experimental setup

We extended the RTSim [22] simulator to support TR-based
CIM operations and to simulate CIM faults. Specifically, for
each TR operation, the simulator probabilistically injects faults
into each word based on a fault rate parameter. If the number
of faults in any word exceeds the ECC correction capacity,
it is recorded as an uncorrectable fault, and the instruction is
not reissued. If the fault count is within the ECC capacity and
are non-ambiguous, they are corrected by the ECC module.
Otherwise, the instruction is reissued to account for re-reading
the senseamps, and the performance and energy metrics are
updated accordingly. Consequently, simulations with higher
ECC levels result in more transverse reads, increasing energy
consumption while reducing the number of uncorrectable
faults. First we evaluate the performance of CIRM-ECC
on a series of AND/OR operations with stochastic inputs.
We then evaluate uncorrectable error and performance using
three benchmarks: in-memory counters, AES encryption, and
matrix-matrix multiplication. All benchmarks are implemented
with TR-based AND/OR operations.

B. Analytical vs simulated fault rates

The fault rate calculations for 512-bit operands, divided into
eight 64-bit words, under various fault rates are illustrated
in Fig. 3. The results are generated with a synthetic trace
consisting 10M AND/OR CIM operations. The trace is run

>The extended RTSim is publicly available online: https:/github.com/
Pitt-JonesLab/RTSim/tree/master.
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Fig. 4: CIRM-ECC energy consumption normalized to no ECC
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Fig. 5: CIRM-ECC execution time normalized to no ECC

multiple times to make sure faults are injected even at smaller
fault rates, e.g., 107°.

The No-ECC configuration reflects the probability of a
single fault. The 1-ECC case assumes that one fault can be
protected, indicating the probability of having more than one
fault. The same applies to 2-ECC and 3-ECC. In the 3-MR
scenario, a fault in one copy is protected if the remaining two
copies are correct, reflecting the probability of having two or
more faults. The same applies to 5-MR and 7-MR. Using a
1-ECC code for CIRM-ECC provides comparable protection
to 3-MR, such that the 64-72 Hamming code reducing spatial
overhead from 200% to just 12.5%. An ECC code that corrects
up to three errors is analogous to 5-MR. This demonstrates that
CIRM-ECC significantly reduces spatial overhead compared to
existing methods.

In the simulation results, the more robust error correction
schemes (“2-ECC” and “3-ECC”) demonstrate greater propor-
tional deviation from the analytical results, however the largest
absolute difference is in the “No ECC” series and still only
around 9%.

C. Impact on execution time and energy consumption

Fig. 4 shows the energy overhead associated with differ-
ent ECC and redundancy schemes, highlighting how CIRM-
ECC performs relative to traditional methods. As expected,
for higher fault rates more ambiguous faults were detected,
requiring reissue of the CIM commands and leading to an
average overhead of 39% (>50% for the 2-ECC in the Counter
benchmark). In contrast, for the fault rate of 1074, only 0.2%
of the CIM instructions produced faults, leading to a nominal
overhead of 0.4%. For lower fault rates as in prior work [5]
the correction overhead would be nominal. The performance
overhead presented in Fig. 5 shows a similar overall trend,
increasing the execution time by over 30% for 2-ECC at
a sensing fault rate 1072 and falling off as the fault rate

decreases. Note that these results also include the latency and
energy consumption of the basic RD/WR operations.
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Fig. 6: CIRM-ECC uncorrectable senseamp and row fault rates

Finally, Fig. 6 demonstrates the uncorrectable bit error rate
(UBER) for different levels of ECC. Even at the same sensing
fault rate the row fault rate does change appreciably across
different benchmarks due to different type of CIM operations
and different data distributions, leading to different numbers
of CIM faults.

V. CONCLUSION

Existing error correction codes are not homomorphic over
bitwise operations such as AND and OR common in CIM
implementations. This makes traditional high-density codes
unsuitable for protecting CIM faults. This paper introduces
CIRM-ECC, designed to protect CIM faults in racetrack
memories. CIRM-ECC is based on a recently proposed CIM
approach that utilizes multi-domain access to execute bulk
bitwise operations [5], [9]. This method enables simultaneous
computation of CIM operations and parity checking, allowing
CIM computation to be performed in tandem with fault
detection and correction. CIRM-ECC can be applied to both
single-bit Hamming codes and multi-bit BCH codes, offering
adaptable fault protection based on the rate of single-level
sensing faults.
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